Để \(y=-1\)
\(\Leftrightarrow x^2+3x=-1\)
\(\Leftrightarrow x^2+3x+1=0\)
\(\Leftrightarrow x^2+2.x.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}+1=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\frac{5}{4}=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}+\frac{\sqrt{5}}{2}\right)\left(x+\frac{3}{2}-\frac{\sqrt{5}}{2}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{2}+\frac{\sqrt{5}}{2}=0\\x+\frac{3}{2}-\frac{\sqrt{5}}{2}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-3-\sqrt{5}}{2}\\x=\frac{-3+\sqrt{5}}{2}\end{cases}}\)
Vậy ...