Cho hàm số f(x) thỏa mãn f x + f ' x = e - x và f(0) = 2. Tất cả các nguyên hàm của f x e 2 x là
A. .
B. .
C. .
D. .
Cho F(x) là một nguyên hàm của hàm số f ( x ) = e x + 2 x thỏa mãn F(0)=3/2. Tìm F(x)
Cho hàm số f(x) có đạo hàm trên khoảng 0 ; + ∞ và f(x)>0, ∀ x ∈ 0 ; + ∞ thỏa mãn f ' x = - x . f 2 x ∀ x ∈ 0 ; + ∞ , biết f 1 = 2 a + 3 và f 2 > 1 4 . Tổng tất cả các giá trị nguyên của a thỏa mãn là
A. -14.
B. 1.
C. 0.
D. -2.
Cho F(x) là một nguyên hàm của hàm số f ( x ) = 1 x - 1 thỏa mãn F(5)=2 và F(0)=1. Tính F(2)-F(-1).
Cho F(x) là một nguyên hàm của hàm số f(x)=|1+x|-|1-x| trên tập R và thỏa mãn F(1)= 3.Tính tổng F(0)+F(2)+F(-3).
( Mu4-42. Cho hàm so $f(x)$ có đạo hàm trên đoạn $[0 ; 1]$ thỏa mãn $f(1)=0$ và $\int_0^1\left[f^{\prime}(x)\right]^2 d x=\int_0^1(x+1) e^x f(x) d x=\frac{e^2-1}{4}$. Tinh tich phân $I=\int_{0}^1 f(x) d x$.
A. $I=2-e$.
B. $I=\frac{e}{2}$.
C. $l=e-2$.
D. $1=\frac{e-1}{2}$
Cho F(x) là một nguyên hàm của hàm số f(x) = |1+x| - |1-x| trên tập R và thỏa mãn F(1) = 3 Tính tổng T = F(0) + F(2) + F(-3)
A. 8.
B. 12.
C. 18.
D. 10.
Giả sử F(x) là một nguyên hàm của hàm số thỏa mãn F(-2) + F(1) = 0 và F(-1) + F(2) = 0, với a,b là các số hữu tỷ.
Giá trị của 3a+6b bằng
A. -4
B. 5
C. 0
D. -3
Gọi F(x) là nguyên hàm của hàm số f ( x ) = ( 2 x - 3 ) 2 thỏa mãn F(0)= 1 3 Giá trị của biểu thức log 2 3 F ( 1 ) - 2 F ( 2 ) bằng:
A. 10
B. -4
C. 4
D. 2