Ta có
Nên
Lấy nguyên hàm hai vế ta có:
Thay x=0 vào ta được f '(0).f(0)=C ⇔ C=1
Lấy nguyên hàm hai vế ta được
Lại có f(0)=1 ⇒ 2 C 1 = 1
⇒
Suy ra f 1 2 = 8
Chọn đáp án B.
Ta có
Nên
Lấy nguyên hàm hai vế ta có:
Thay x=0 vào ta được f '(0).f(0)=C ⇔ C=1
Lấy nguyên hàm hai vế ta được
Lại có f(0)=1 ⇒ 2 C 1 = 1
⇒
Suy ra f 1 2 = 8
Chọn đáp án B.
Cho hàm số f(x) xác định trên R\{±1} thỏa mãn f '(x) = 1 x 2 - 1 . Biết f(–3) +f(3) = 0 và f - 1 2 + f 1 2 = 2. Giá trị T = f(–2) + f(0) + f(4) bằng:
A. T = 1 2 ln 9 5
B. T = 2 + 1 2 ln 9 5
C. T = 3 + 1 2 ln 9 5
D. T = 1 + 1 2 ln 9 5
Cho hàm số f(x) xác định trên ℝ \ − 2 ; 1 thỏa mãn f ' x = 1 x 2 + x − 2 ; f 0 = 1 3 , và f − 3 − f 3 = 0. Tính giá trị của biểu thức T = f − 4 + f − 1 − f 4
A. 1 3 ln 2 + 1 3
B. ln 80 + 1
C. 1 3 ln 4 5 + ln 2 + 1
D. 1 3 ln 8 5 + 1
Cho hàm số y = f(x) có đạo hàm liên tục trên ℝ thỏa mãn f ' x - x f x = 0 , f x > 0 , ∀ x ∈ ℝ và f(0) = 1. Giá trị của f(1) bằng?
A. 1 e
B. 1 e
C. e
D. e
Cho hàm số f(x) có đạo hàm liên tục trên và thỏa mãn f ( x ) > 0 , ∀ ∈ ℝ . Biết f(0) = 1 và f ' x f x = 2 - 2 x . Tìm các giá trị thực của tham số m để phương trình f(x) = m có hai nghiệm thực phân biệt.
A. m > e
B. 0 < m ≤ 1
C. 0 < m < e
D. 1 < m < e
Cho hàm số f(x) thỏa mãn f ' ( x ) 2 + f ( x ) . f ' ' ( x ) = 15 x 4 + 12 x , ∀ x ∈ R và f(0)=f '(0)=1. Giá trị của f 2 ( 1 ) bằng
A. 9 2
B. 5 2
C. 10
D. 8.
Cho hàm số f(x) thỏa mãn ( f ' ( x ) ) 2 + f ( x ) . f ' ' ( x ) = 15 x 4 + 12 x , ∀ x ∈ R và f ( 0 ) = f ' ( 0 ) = 1 Giá trị của f 2 ( 1 ) bằng
A. 8
B. 9/2
C. 10
D. 5/2
Cho hàm số f x thỏa mãn f ' x 2 + f ' ' x = 15 x 4 + 12 x , ∀ x ∈ ℝ và f 0 = f ' 0 = 1 . Giá trị của f 1 2 là
A. 10
B. 8
C. 5 2
D. 9 2
Cho hàm số f ( x ) liên tục trên ℝ và f ( x ) ≠ 0 với mọi x ∈ ℝ thỏa mãn f ' ( x ) = ( 2 x + 1 ) . f 2 ( x ) v à f ( 1 ) = - 0 , 5 . Biết tổng f ( 1 ) + f ( 2 ) + f ( 3 ) + . . . + f ( 2017 ) = a b ; ( a ∈ ℝ ; b ∈ ℝ ) v ớ i a b tối giản. Mệnh đề nào dưới đây đúng?
A. b - a = 4035
B. a + b = - 1
C. a b < - 1
D. a ∈ - 2017 ; 2017
Cho hàm số f(x) xác định trên R\{-1;2} thỏa mãn f ' ( x ) = 3 x 2 - x - 2 , f(-2)=2 ln2+2 và f(0)=ln2-1. Giá trị của biểu thức f(-3)+f( 1 2 ) bằng
A. 2+ln5.
B. 2+ln 5 2 .
C. 2-ln2.
D. 1+ln 5 2 .