Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn f(1)=0 và ∫ 0 1 [ f ' ( x ) ] 2 d x = ∫ 0 1 ( x + 1 ) e x f ( x ) d x = e 2 - 1 4 Tính tích phân I= I = ∫ 0 1 f ( x ) d x
A. I=2-e
B. I=e-2
C. I=e/2
D. I = e - 1 2
Cho số thực a>0. Giả sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f(x).f(a – x) = 1, ∀ x ∈ [0;a]. Tính tích phân I = ∫ 0 a 1 1 + f ( x ) d x
Cho hàm số y=f(x) liên tục trên R thỏa mãn f(1)=1 và ∫ 0 1 f ( x ) d x = 1 3 . Tính tích phân I = ∫ 0 π 2 sin 2 x f ' ( sin x ) d x
A. I = 4 3
B. I = 8 3
C. I = - 4 3
D. I = - 8 3
Cho hàm số f(x) liên tục trên ℝ thỏa mãn f x 3 + 1 = 2 x − 1 , ∀ x ∈ ℝ . Tính tích phân I = ∫ 0 2 f x d x .
A. I = -2
B. I = 5 2
C. I = - 4
D. I = 6
Cho hàm số f(x) có đạo hàm f'(x) thỏa mãn các đẳng thức ∫ 0 1 ( 2 x - 1 ) f ' ( x ) d x = 10 , f ( 1 ) + f ( 8 ) = 0 . Tính I = ∫ 0 1 f ( x ) d x .
A. I = 2.
B. I = 1.
C. I = -1.
D. I = -2.
Cho f(x) là hàm số liên tục trên R và thỏa mãn điều kiện ∫ 0 1 f ( x ) d x = 4 , ∫ 0 3 f ( x ) d x = 6 . Tính I = ∫ - 1 1 f ( 2 x + 1 ) d x
A. I = 6
B. I = 3
C. I = 4
D. I = 5
Cho hàm số y=f(x) có đạo hàm liên tục trên đoạn [ 0 ; 2 ] và thỏa mãn f ( 0 ) = 2 , ∫ 0 2 ( 2 x - 4 ) . f ' ( x ) d x = 4 . Tính tích phân I = ∫ 0 2 f ( x ) d x .
A. I = 2
B. I = - 2
C. I = 6
D. I = - 6
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [-1; 3] và thỏa mãn f(-1) = 4; f(3) = 7. Giá trị của I = ∫ - 1 3 5 f ' t d t bằng
A. I = 20.
B. I = 3.
C. I = 10.
D. I = 15.
Cho hàm số f(x) thỏa mãn ∫ 1 2 ( 2 x + 3 ) f ' ( x ) d x = 15 và 7f(2)-5f(1)=8. Tính I = ∫ 1 2 f ( x ) d x
A. I = 7 2
B. I = - 2 7
C. I = 2 7
D. I = - 7 2