Ta có f ' x < 0 ∀ x ∈ 0 ; 2 ⇔ 3 x 2 - 4 x - m < 0 ⇔ m > 3 x 2 - 4 x
Xét hàm số g x = 3 x 2 - 4 x trên khoảng ( 0;2 )
Lập bảng biến thiên, ta suy ra m ≥ 4
Đáp án D
Ta có f ' x < 0 ∀ x ∈ 0 ; 2 ⇔ 3 x 2 - 4 x - m < 0 ⇔ m > 3 x 2 - 4 x
Xét hàm số g x = 3 x 2 - 4 x trên khoảng ( 0;2 )
Lập bảng biến thiên, ta suy ra m ≥ 4
Đáp án D
Cho hàm số g ( x ) = x 2 + 1 và hàm số f ( x ) = x 3 - 3 x 2 + 1 . Tìm m để phương trình f ( g ( x ) ) - m = 0 có 4 nghiệm phân biệt.
A. - 3 < m < 1
B. - 3 < m ≤ 1
C. - 3 ≤ m ≤ - 1
D. m > - 1
Cho hàm số f(x)=3 sinx+2. Gọi S là tập hợp các giá trị nguyên của tham số m để hàm số y = f 3 ( x ) - 3 mf 2 ( x ) + 3 ( m 2 - 4 ) f ( x ) - m nghịch biến trên khoảng (0;π/2). Số tập con của S bằng
A. 1
B. 2.
C. 4.
D. 16.
Cho hàm số f ( x ) = x 4 + 2 m x 2 + m với m làm tham số, m>0
Đặt g ( x ) = f ( x ) + f ' ( x ) + f ' ' ( x ) + f ( 3 ) ( x ) + f ( 4 ) ( x ) Mệnh đề nào dưới đây đúng
A. g ( x ) ≥ 0 ∀ x
B. g ( x ) < 0 ∀ x
C. g ( x ) > 0 ∀ x
D. g ( x ) ≤ 0 ∀ x
Cho hàm số f(x) có đạo hàm liên tục trên R và thỏa mãn f(x)>0,∀x∈R. Biết f(0)=1 và (2-x)f(x)-f' (x)=0. Tìm tất cả các giá trị thực của tham số m để phương trình f(x)=m có hai nghiệm phân biệt.
A. m< e 2 .
B. 0<m< e 2 .
C. 0<m≤ e 2 .
D. m > e 2
Cho hàm số y = 1 3 x 3 - ( m + 1 ) x 2 + ( m + 3 ) x + m - 4 . Tìm m để hàm số y=f(|x|) có 5 điểm cực trị
A. -3<m<-1
B. m>1
C. m>4
D. m>0
Cho hàm số y = f ( x ) = a x 3 + b x 2 + c x + d có đồ thị hàm số như hình bên dưới đây:
Có bao nhiêu giá trị nguyên của tham số m để phương trình f 2 ( x ) - ( m + 5 ) f ( x ) + 4 m + 4 = 0 có 7 nghiệm phân biệt?
A. 1
B. 2
C. 3
D. 4
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ sau.
Tìm tất cả các giá trị thực của tham số m để phương trình f(x)-m=0 có 4 nghiệm phân biệt.
A. m ϵ (1 ;2]
B. m ϵ [1 ;2)
C. m ϵ (1 ;2)
D. m ϵ[1 ;2)
Cho hàm số y = f(x) liên tục trên R sao cho m a x x ∈ 0 ; 10 f ( x ) = f ( 2 ) = 4 . Xét hàm số g ( x ) = f ( x 3 + x ) − x 2 + 2 x + m . Giá trị của tham số m để m a x x ∈ 0 ; 2 g ( x ) = 8 là
A. 5
B. 4
C. -1
D. 3
Cho đồ thị y=f’(x) trên [m;n] (như hình vẽ). Biết f(a)> f(c)>0; f(d)<f(b)<0 và
m
a
x
f
(
x
)
[
m
;
n
]
=
f
(
n
)
;
m
i
n
f
(
x
)
[
m
;
n
]
=
f
(
m
)
Số điểm cực trị của hàm số
y
=
f
(
x
)
trên [m;n] là
A. 6
B. 8
C. 9
D. 10
Tìm giá trị của m để hàm số F(x) = m 2 x 3 + ( 3 m + 2 ) x 2 - 4 x + 3 là một nguyên hàm của hàm số f(x) = 3 x 2 + 10 x - 4 .
A. m = 2.
B. m = ± 1 .
C. m = -1.
D. m = 1.