Cho số thực a>0 Gỉa sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f(x).f(a-x) = 1 Tính tích phân I = ∫ 0 a 1 1 + f ( x ) d x
A. a/3
B. a/2
C. a
D. 2a/3
Cho số thực a>0. Giả sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f(x).(fa-x) = 1 Tính tích phân ∫ 0 1 1 1 + f ( x ) d x
A. I = a/2
B. I = a
C. I = 2a/3
D. I = a/3
Cho hàm số y = f(x) liên tục trên đoạn [a;b] và f(x)>0 Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = f(x) trục hoành và 2 đường thẳng x=a; x=b Thể tích của vật thể tròn xoay khi quay D quanh Ox được tính theo công thức
Cho hàm số f(x) có đạo hàm f'(x) liên tục trên R và có đồ thị của hàm số f'(x) như hình vẽ, Biết ∫ 0 3 ( x + 1 ) f ' ( x ) d x = a
và ∫ 0 1 f ' ( x ) d x = b , ∫ 1 3 f ' ( x ) d x = c , f ( 1 ) = d Tích phân ∫ 0 3 f ( x ) d x bằng
A. -a+b+4c-5d
B. -a+b-3c+2d
C. -a+b-4c+3d
D. -a-b-4c+5d
Cho số dương a và hàm số y = f(x) liên tục trên R thỏa mãn f(x) + f(-x) = a. Giá trị của biểu thức ∫ - a a f ( x ) d x bằng
A. 2 a 2
B. a 2
C. a
D. 2 a
Cho hàm số y = f(x) có đạo hàm liên tục trên R, đồ thị hàm y = f’(x) như hình vẽ dưới đây. Khẳng định nào trong các phương án A, B, C, D dưới đây là đúng?
A. .
B. .
C. .
D. .
Cho hàm số y = f(x) liên tục trên đoạn [a;b] Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = f(x) trục hoành và hai đường thẳng x=a; x=b. Diện tích hình phẳng D được tính bởi công thức.
Cho hàm số y= f(x) xác định và liên tục trên [ a; e] và có đồ thị hàm số y= f’ (x) như hình vẽ bên. Biết rằng f(a) + f( c)) = f( b) + f( d) . Tìm giá trị lớn nhất và nhỏ nhất của hàm số y= f( x) trên [ a; e]?
A. m a x [ a , e ] f ( x ) = f ( c ) m i n [ a , e ] f ( x ) = f ( a )
B. m a x [ a , e ] f ( x ) = f ( a ) m i n [ a , e ] f ( x ) = f ( b )
C. m a x [ a , e ] f ( x ) = f ( e ) m i n [ a , e ] f ( x ) = f ( b )
D. m a x [ a , e ] f ( x ) = f ( d ) m i n [ a , e ] f ( x ) = f ( b )
Cho hàm số y=f(x) liên tục trên R và thỏa mãn f(x) + f( π 3 - x )= 1 2 sin x cos x ( 8 cos 3 x + 1 ) , ∀ x ∈ R Biết tích phân I= ∫ 0 π 3 f ( x ) d x được biểu diễn dưới dạng I= a b ln c d ; a , b , c , d ∈ Z và các phân số a b ; c d là các phân số tối giản. Tính S= a 3 + a b - c + d