Cho hàm số y = f(x) liên tục và có đạo hàm trên ℝ , có đồ thị như hình vẽ bên. Với m là tham số thực bất kì thuộc đoạn [1;2]. Phương trình f x 3 − 3 x 2 = m 3 − 3 m 2 + 5 có bao nhiêu nghiệm thực?
A. 3
B. 7
C. 5
D. 9
Cho hàm số y=f(x) liên tục trên R và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị thực của tham số m để phương trình f(cosx)=10 có 2 nghiệm phân biệt thuộc ( 0 ; 3 π 2 ] là
A. [-2;2]
B. (0;2)
C. (-2;2)
D. [0;2)
Cho hàm số y = f(x) liên tục và có đạo hàm trên ℝ , có đồ thị như hình vẽ. Với m là tham số bất kì thuộc [0;1]. Phương trình f x 3 - 3 x 2 = 3 m + 4 1 - m có bao nhiêu nghiệm thực?
A. 2
B. 3
C. 5
D. 9
Cho hàm số y = f(x) liên tục trên R và có đồ thị như hình vẽ bên.
Có bao nhiêu giá trị nguyên của tham số m để phương trình f x 2 − 2 x = m có đúng 4 nghiệm thực phân biệt thuộc đoạn − 3 2 ; 7 2 ?
A. 3
B. 1
C. 4
D. 2
Cho hàm số y = f(x) liên tục và có đạo hàm trên R, có đồ thị như hình vẽ. Với m là tham số bất kỳ thuộc [0;1]. Phương trình f x 3 - 3 x 2 = 3 m + 4 1 - m có bao nhiêu nghiệm thực?
A. 2
B. 3
C. 5
D. 9
Cho hàm số f(x) liên tục trên R và có đồ thị như hình vẽ bên. Có bao nhiêu số nguyên m để phương trình f(sinx)=m có đúng hai nghiệm thực phân biệt thuộc đoạn [0;π].
A. 5
B. 4
C. 3
D. 2
Cho hàm số y = f(x) liên tục trên R có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên của m để phương trình |f(x−2)+1| − m = 0 có 8 nghiệm phân biệt.
A. 0
B. 2.
C. 1.
D. 2.
Cho hàm số y=f(x) liên tục trên R có đồ thị như hình vẽ bên. Có bao nhiêu số nguyên m để phương trình f(f(x)-m)=0 có tất cả 9 nghiệm thực phân biệt.
A. 1.
B. 0.
C. 3.
D. 2.
Cho hàm số y = f(x) xác định trên R và có đồ thị như hình vẽ. Tìm tất cả các giá trị thực của tham số m để phương trình f ( x ) + m - 2019 = 0 có ba nghiệm phân biệt.
A.m < 2016, m > 2020
B. 2016 < m < 2020
C. m ≤ 2016 , m ≥ 2020
D. m = 2016, m = 2020