Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho hàm số f (x) có đồ thị của hàm số f'(x) như hình vẽ bên.
Biết f(-1)=f(4)=0. Hàm số y = ( f ( x ) ) 2 nghịch biến trên khoảng nào dưới đây ?
A. (-1;0).
B. (1;4).
C. ( - ∞ ; 1 ) .
D. ( 4 ; + ∞ ) .
Cho hàm số f(x) có đồ thị của hàm số y=f'(x) như hình vẽ bên và f(-2)=f(2)=0. Hàm số y = ( f ( 3 - x ) ) 2 nghịch biến trên khoảng nào dưới đây ?
A. (1;2).
B. (-2;-1).
C. ( 5 ; + ∞ ) .
D. (2;5).
Cho hàm số f(x) có đồ thị của hàm số y=f’(x-2)+2 như hình vẽ dưới. Hàm số y=f(x) nghịch biến trên khoảng nào dưới đây?
Cho hàm số f (x) có đồ thị của hàm số y = f'(x-2)+2 như hình vẽ bên.
Hàm số y = f(x) nghịch biến trên khoảng nào dưới đây ?
A. - ∞ ; 2
B. - 1 ; 1
C. 3 2 ; 5 2
D. 2 ; + ∞
Cho hàm số f (x) có đồ thị của hàm số y=f'(x-2)+2 như hình vẽ bên.
Hàm số y=f(x) nghịch biến trên khoảng nào dưới đây ?
A. ( - ∞ ; 2 ) .
B. (-1;1).
C. 3 2 ; 5 2 .
D. ( 2 ; + ∞ ) .
Cho hàm số y = f(x) có đồ thị của hàm số y = f '(x) được cho như hình bên và các mệnh đề sau:
(1). Hàm số y = f(x) đồng biến trên khoảng (-1;0)
(2). Hàm số y = f(x) nghịch biến trên khoảng (1;2)
(3). Hàm số y = f(x) đồng biến trên khoảng (3;5)
(4). Hàm số y = f(x) có hai điểm cực đại và một điểm cực tiểu.
Số mệnh đề đúng là
A. 1
B. 3
C. 4
D. 2
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f’(x) và các khẳng định sau:
(1). Hàm số y=f(x) đồng biến trên khoảng 1 ; + ∞
(2). Hàm số y=f(x) nghịch biến trên khoảng - ∞ ; - 2
(3). Hàm số y=f(x) nghịch biến trên khoảng - 2 ; 1 .
(4). Hàm số y = f x 2 đồng biến trên khoảng - 1 ; 0
(5). Hàm số y = f x 2 nghịch biến trên khoảng (1;2)
Số khẳng định đúng là
A. 4
B. 3
C. 2
D. 5
Cho hàm số f(x) có đồ thị của hàm số f'(x) như hình vẽ bên
Biết f - 1 = f 4 = 0 . Hàm số y = f x 2 nghịch biến trên khoảng nào dưới đây ?
A. (-1;0)
B. (1;4)
C. - ∞ ; 1
D. 4 ; + ∞
Cho hàm số y=f(x) có đồ thị hàm số y=f '(x) như hình vẽ bên. Hàm số y = f ( x 2 - 2 ) - 1 3 x 3 - x 2 + 3 x - 4 nghịch biến trên khoảng nào dưới đây ?
A. - ∞ ; - 3
B. - 3 ; 0
C. 1 ; 3
D. - 3 ; + ∞