Cho a,b là các số tự nhiên thoả mãn 2a^2+a=3b^2+b
C/minh a-b;2a+2b+1 là các số chính phương
Cho 2 số tự nhiên a, b thỏa mãn \(2a^2+a=3b^2+b\). Chứng minh rằng:
\(2a+2b+1\)là số chính phương.
Cho a,b là các số tự nhiên thỏa mãn: 2a2-3b2=b-a
chứng minh: 2a+2b+1 là số chính phương
Cho \(a\) và \(b\) là các số tự nhiên thỏa mãn \(2a^2+2=3b^2+b\). Chứng minh rằng: \(a-b\) và \(3a+3b+1\) là các số chính phương.
Cho a,b là các số tự nhiên thỏa mãn 2a2+a = 3b2+b.
CMR: a-b và 2a+2b+1 đều là số chính phương ?
Cho a và b là các số tự nhiên thỏa mãn 2a2 + a = 3b2 + b.
Chứng minh rằng: (a - b) và (3a + 3b + 1) là các số chính phương.
Cho 2 số hữu tỉ a, b thỏa mãn đẳng thức a^3b + ab^3 + 2a^2b^2 + 2a + 2b + 1 = 0. Chứng minh rằng 1 - ab là bình phương của một số hữu tỉ
Cho 2a2+a=3b2+b.Chứng minh rằng 2a+2b+1 là số chính phương
Cho a, b, c là các số tự nhiên thỏa mãn \(\left(2a^2-b\right)^2+\left(3b^2-a\right)^2+c^2-12a^2b^2-2ab-2=-4a^3-6b^3-\frac{1}{c^2}\)
Chứng minh rằng \(\left(a-b\right)\) và \(\left(2a+2b+1\right)\) đồng thời là các số chính phương