Chương 1: MỆNH ĐỀ, TẬP HỢP

HD

Cho hàm số y = x^2 + 3x có đồ thị (P). Gọi S là tập hợp các giá trị của tham số m để đường thẳng d : y = x + m^2 cắt đồ thị (P) tại hai điểm phân biệt A,B sao cho trung điểm I của đoạn AB nằm trên đường thẳng d':  y= 2x+3. Tổng bình phương các phần tử của S là 

NL
14 tháng 12 2020 lúc 23:39

Phương trình hoành độ giao điểm:

\(x^2+3x=x+m^2\Leftrightarrow x^2+2x-m^2=0\)

Pt đã cho luôn có 2 nghiệm pb

\(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-m^2\end{matrix}\right.\) 

Do I là trung điểm đoạn AB \(\Leftrightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=-1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{x_A+m^2+x_B+m^2}{2}=m^2-1\end{matrix}\right.\)

Mà I thuộc d'

\(\Leftrightarrow y_I=2x_I+3\Leftrightarrow m^2-1=2.\left(-1\right)+3\)

\(\Leftrightarrow m^2=2\Rightarrow m=\pm\sqrt{2}\)

\(\Rightarrow\sum m^2=4\)

Bình luận (0)

Các câu hỏi tương tự
AN
Xem chi tiết
LN
Xem chi tiết
QS
Xem chi tiết
H24
Xem chi tiết
KC
Xem chi tiết
HD
Xem chi tiết
TH
Xem chi tiết
LV
Xem chi tiết