PB

Cho hai số phức z, w thỏa mãn z − 3 − 2 i ≤ 1 w + 1 + 2 i ≤ w − 2 − i .  

Tìm giá trị nhỏ nhất P min của biểu thức P = z − w .

A.  P min = 3 2 − 2 2

B.  P min = 2 + 1

C.  P min = 5 2 − 2 2

D. P min = 2 2 + 1 2

CT
25 tháng 6 2018 lúc 3:47

Đáp án C

Đặt z = x + y i    x , y ∈ ℝ ,

khi đó 

z − 3 − 2 i ≤ 1 ⇔ x − 3 2 + y − 2 2 ≤ 1

Suy ra tập hợp điểm biểu diễn số phức z là miền trong đường tròn

  x − 3 2 + y − 2 2 = 1.

Đặt w = a + b i a , b ∈ ℝ ,  khi đó  w + 1 + 2 i ≤ w − 2 − i ⇔ a + b ≤ 0

 

Suy ra tập hợp điểm biểu diễn số phức w là miền x + y ≤ 0 , bờ là đường thẳng x + y = 0 .

Gọi C : x − 3 2 + y − 2 2 = 1 có tâm I 3 ; 2 , bán kính R = 1 và Δ : x + y = 0 .

Do đó

P = z − w = M N ⇒ M N min = d I ; Δ − R = 5 2 − 1 = 5 2 − 2 2 .  

 

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết