BB

Cho hai số a;b>0 thỏa mãn \(a+\dfrac{1}{b}=1\) .Chứng minh: \(\left(a+\dfrac{1}{a}\right)^2+\left(b+\dfrac{1}{b}\right)^2\)\(\dfrac{25}{2}\)

AH
15 tháng 11 2023 lúc 10:37

Lời giải:

$a+\frac{1}{b}=1\Rightarrow b=\frac{1}{1-a}$

Khi đó:

$A=(a+\frac{1}{a})^2+(b+\frac{1}{b})^2=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+4$

$=(1-a)^2+\frac{1}{(1-a)^2}+a^2+\frac{1}{a^2}+4$

Áp dụng BĐT AM-GM:

$A=[\frac{1}{(1-a)^2}+\frac{1}{a^2}]+[(1-a)^2+a^2]$

$\geq \frac{2}{a(1-a)}+2a(1-a)+4$

$=2a(1-a)+\frac{1}{8a(1-a)}+\frac{15}{8a(1-a)}+4$

\(\geq 2\sqrt{2a(1-a).\frac{1}{8a(1-a)}}+\frac{15}{8.\left(\frac{a+1-a}{2}\right)^2}+4\)

\(=2\sqrt{\frac{1}{4}}+\frac{15}{2}+4=\frac{25}{2}\)

Ta có đpcm

Dấu "=" xảy ra khi $a=\frac{1}{2}; b=2$

Bình luận (2)

Các câu hỏi tương tự
LL
Xem chi tiết
MH
Xem chi tiết
HD
Xem chi tiết
ST
Xem chi tiết
ST
Xem chi tiết
DH
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
NN
Xem chi tiết