Violympic toán 9

H24

cho hai số a,b dương thỏa mãn a + b = 2. tìm GTNN biểu thức

                                   B = √a^3+√b^3

AH
3 tháng 11 2023 lúc 16:14

Lời giải:

Áp dụng BĐT AM-GM:

$\sqrt{a^3}+\sqrt{a}\geq 2\sqrt{\sqrt{a^3}.\sqrt{a}}=2a$

$\sqrt{b^3}+\sqrt{b}\geq 2\sqrt{\sqrt{b^3}.\sqrt{b}}=2b$

Cộng hai BĐT trên ta có:

$\sqrt{a^3}+\sqrt{b^3}+\sqrt{a}+\sqrt{b}\geq 2(a+b)$

$\Rightarrow B+\sqrt{a}+\sqrt{b}\geq 4(1)$

Áp dụng tiếp BĐT AM-GM:

$(\sqrt{a}+\sqrt{b})^2\leq (a+b)(1+1)=2.2=4\Rightarrow \sqrt{a}+\sqrt{b}\leq 2(2)$

Từ $(1); (2)\Rightarrow B\geq 4-2=2$

Vậy $B_{\min}=2$.

 

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
KC
Xem chi tiết
DF
Xem chi tiết
H24
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết