MT

Cho hai số a và b thỏa mãn a³+b³ = 3ab-1.Tính giá trị của a+b

MS
17 tháng 12 2023 lúc 19:32

Ta có:

\(a^3+b^3=3ab-1\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=3ab-1\)

\(\Leftrightarrow\left(a+b\right)\left(a^2+2ab+b^2-3ab\right)=3ab-1\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)=3ab-1\)

\(\Leftrightarrow\left(a+b\right)^3+1-3ab\left(a+b\right)-3ab=0\)

\(\Leftrightarrow\left(a+b+1\right)\left[a^2+2ab+b^2-a-b+1\right]-3ab\left(a+b+1\right)=0\)

\(\Leftrightarrow\left(a+b+1\right)\left(a^2+2ab+b^2-a-b+1-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+1\right)\left(a^2-ab+b^2-a-b+1\right)=0\)

\(\Leftrightarrow\left(a+b+1\right)\left(2a^2+2b^2-2ab-2a-2b+2\right)=0\)

\(\Leftrightarrow\left(a+b+1\right)\left(a^2-2a+1+b^2-2b+1+a^2-2ab+b^2\right)=0\)

\(\Leftrightarrow\left(a+b+1\right)\left[\left(a-1\right)^2+\left(b-1\right)^2+\left(a-b^2\right)\right]=0\)

.......

Mình nghĩ đề a, b là 2 số dương nha, nếu a,b là 2 số dương thì mình loại được trường hợp a+b+1=0 nhé

Bình luận (0)

Các câu hỏi tương tự
TY
Xem chi tiết
SV
Xem chi tiết
TL
Xem chi tiết
MP
Xem chi tiết
CM
Xem chi tiết
MS
Xem chi tiết
DT
Xem chi tiết
HS
Xem chi tiết
VH
Xem chi tiết