Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho các số thực ko âm a,b thỏa mãn (1+a)(1+b)=\(\frac{9}{4}\).Chứng minh
a, a+b\(\ge\)1
b, \(a^2+b^2\)\(\ge\frac{1}{2}\)
Cho a,b,c >0 thỏa mãn a+b+c\(\le\)\(\frac{3}{2}\).Chứng minh
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)6
b,a+ b+ c+ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)\(\ge\)\(\frac{15}{2}\)
Cho a,b và c là các số thực dương thỏa mãn a+b+c=1. Chứng minh rằng
\(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{15}{4}\)
Cho hai số dương a;b thỏa mãn a+b=1 . Chứng minh rằng \(\frac{1}{ab}\)+ \(\frac{1}{a^2+b^2}\)\(\ge\)6
Giups mk vs !
Cho 2 số a, b thỏa mãn điều kiện a+b=1. Chứng minh rằng: \(a^3+b^3+ab\ge\frac{1}{2}\)
Cho 2 số a, b thỏa mãn a + b = 1.
Chứng minh rằng: \(^{a^3+b^3+ab\ge\frac{1}{2}}\)
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Cho các số thực ko âm a,b thỏa mãn (1+a)(1+b)=\(\frac{9}{4}\).Chứng minh
a, a+b\(\ge\)1
b, \(a^2+b^2\)\(\ge\frac{1}{2}\)