BT

Cho hai hình vuông ABCD và MNPQ như trong hình vẽ. Biết BD = 12 cm. Hãy tính diện tích phần gạch chéo.

VH
8 tháng 5 2022 lúc 0:07

tham khảo

 

Diện tích tam giác ABD là:

(12 x (12 : 2))/2 = 36 (cm2)

Diện tích hình vuông ABCD là:

36 x 2 = 72 (cm2)

Diện tích hình vuông AEOK là:

72 : 4 = 18 (cm2)

Do đó: OE x OK = 18 (cm2)

r x r = 18 (cm2)

Diện tích hình tròn tâm O là:

18 x 3,14 = 56,92 (cm2)

Diện tích tam giác MON = r x r : 2 = 18 : 2 = 9 (cm2)

Diện tích hình vuông MNPQ là:

9 x 4 = 36 (cm2)

Vậy diện tích phần gạch chéo là:

56,52 - 36 = 20,52 (cm2)

Bình luận (0)
PC
8 tháng 5 2022 lúc 5:36

20,52cm2

Bình luận (0)
TC
8 tháng 5 2022 lúc 7:34

refer

Diện tích tam giác ABD là:

(12 x (12 : 2))/2 = 36 (cm2)

Diện tích hình vuông ABCD là:

36 x 2 = 72 (cm2)

Diện tích hình vuông AEOK là:

72 : 4 = 18 (cm2)

Do đó: OE x OK = 18 (cm2)

r x r = 18 (cm2)

Diện tích hình tròn tâm O là:

18 x 3,14 = 56,92 (cm2)

Diện tích tam giác MON = r x r : 2 = 18 : 2 = 9 (cm2)

Diện tích hình vuông MNPQ là:

9 x 4 = 36 (cm2)

Vậy diện tích phần gạch chéo là:

56,52 - 36 = 20,52 (cm2)

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
NV
Xem chi tiết
NM
Xem chi tiết
KB
Xem chi tiết
H24
Xem chi tiết