PB

Cho hai đường tròn (O;R) và (O;r) tiếp xúc ngoài tại A. Một đường thẳng (d) tiếp xúc với cả hai đường tròn trên tại B và C với B ∈ (O), C ∈ (O’).

b) Gọi M là trung điểm của BC. Chứng minh MA là tiếp tuyến chung của hai đường tròn (O) và (O‘).

CT
29 tháng 5 2018 lúc 15:39

Đề kiểm tra Toán 9 | Đề thi Toán 9

b) Ta có: M là trung điểm của cạnh huyền BC

⇒ MA = MB = MC

⇒ ΔMAB cân tại M ⇒ ∠(MAB ) = ∠(MBA )

Lại có: ΔOAB cân tại O ⇒ ∠(OAB ) = ∠(OBA )

⇒ ∠(MAB ) + ∠(OAB ) = ∠(MBA ) + ∠(OBA ) ⇔ ∠(MAO ) = ∠(MBO) = 90 0

⇒ MA là tiếp tuyến của (O)

Chứng minh tương tự: MA là tiếp tuyến của (O')

Vậy MA là tiếp tuyến chung của hai đường tròn (O) và (O')

Bình luận (0)

Các câu hỏi tương tự
HK
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
UN
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
DT
Xem chi tiết
TN
Xem chi tiết