cho hai đường tròn tâm (O) ,(O') cắt nhau tại A và B .đường phân giác của góc OBO' cắt các đường tròn (O) ,(O') tương ứng tại C,D.Hãy so sánh các góc ở tâm BOC và BO'D
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O;R), có các đường cao AI, BK cắt nhau tại H. Hơn nữa, AI, BK cắt đường tròn (O) tương ứng D và E
a) Chứng minh tứ giác AKIB nội tiếp
b) Chứng minh : BHD là tam giác cân
Cho hai đường tròn (O;R) và (O';R') cắt nhau tại A và B (O, O' thuốc hai nửa mặt phẳng bờ AB. Một đường thẳng qua A cắt đường tròn (O) và(O') tương ứng tại C và D ( A nằm giữa C và D). Các tiếp tuyến tại C và D của hai đường tròn cắt nhau tại K. Nối KB cắt CD tại I. Kẻ Ix song song với KD cắt BD tại E
a) CMR tam giác BOO' đồng dạng tam giác BCD (đã làm)
b) CM tứ giác BCKD nội tiếp (đã làm)
c) CM AE là tiếp tuyến của đường tròn (O;R)
Giải giúp mình các bài này với ạ!
1) Từ điểm A nằm ngoài đường tròn tâm O, vẽ tiếp tuyến AB (B là tiếp điểm). Lấy điểm C thuộc đường tròn tâm (O) khác điểm B sao cho AB = AC
a. CM : Tam giác OAB = tam giác OAC
b. CM : AC là tiếp tuyến của đường tròn tâm O
c. Gọi I là giao điểm của OA và BC. Tính AB biết bán kính (R) = 5cm, BC = 8cm
2) Lấy 2 điểm A và B thuộc đường tròn tâm O (3 điểm A, B, O không thẳng hàng). Tiếp tuyến của O tại A cắt tia phân giác của góc AOB tại C.
a. So sánh tam giác OAC và tam giác OBC.
b. CM : BC là tiếp tuyến của đường tròn tâm O
3) Cho đường tròn tâm O, bán kính R. Lấy điểm A cách O một khoảng = 2R. Từ A vẽ 2 tiếp tuyến AB, AC (B,C là tiếp điểm). OA cắt đường tròn tâm O tại I. Đường thẳng qua O và vuông góc với OB cắt AC tại K.
a. CM : OK // AB
b. CM : tam giác OAK là tam giác cân
c. CM : KI là tiếp tuyến của đường tròn tâm O.
Cho hai đường tròn (O; R) và (O’; R’) cắt nhau tại A và B. (O và O’ nằm ở hai nửa mặt phẳng bờ AB). Một đường thẳng qua A cắt đường tròn (O) và (O’) tương ứng tại C và D (A nằm giữa C và D). Các tiếp tuyến tại C và D của hai nửa đường tròn cắt nhau tại K. Nối KB cắt CD tại I. Kẻ IE // KD (E thuộc BD).
a) Chứng minh tam giác BOO’ và tam giác BCD đồng dạng.
b) Chứng minh tứ giác BCKD nội tiếp.
c) Chứng minh AE là tiếp tuyến của đường tròn (O; R).
d) Tìm vị trí của CD để diện tích tam giác BCD lớn nhất.
Cho hai đường tròn (O;R) và (O';R') cắt nhau tại A và B. (O và O' nằm ở hai nửa mặt phẳng bờ AB.) Một đường thẳng qua A cắt đường tròn (O) và (O') tương ứng tại C và D (A nằm giữa C và D). Các tiếp tuyến tại C và D của hai đường tròn cắt nhau tại K. Nối KB cắt CD tại I. Kẻ IE song song với KD (E thuộc BD).
a/ Chứng minh tam giác BOO' đồng dạng với tam giác BCD.
b/ Chứng minh tứ giác BCKD là tứ giác nội tiếp
c/ Chứng minh AE là tiếp tuyến của đường tròn (O;R)
d/ Tìm vị trí của CD để diện tích tam giác BCD lớn nhất
Cho tam giác ABC vuông tại A có ba đỉnh nằm trên đường tròn(O;R).Các đường phân giác trong của góc B và góc C cắt nhau tại E và lần lượt cắt đường tròn tại D và F.Chứng minh AEDF là hình thoi
cho tam giác ABC nội tiếp đường tròn (O,R). Phân giác góc BAC cắt BC tại D và cắt đường tròn (O) tại E.Vẽ đường tròn đường kính AE. Đường thẳng qua D vuông góc với AE cắt đường kinhs AE tại F. chứng minh tam giác EFC cân