PB

Cho hai đường tròn (O) và (O’) cắt nhau tại A và B, trong đó O’ nằm trên đường tròn (O). Kẻ đường kính O’OC của đường tròn (O). Đường vuông góc với AO’ tại O’ cắt CB ở I. Đường vuông góc với AC tại C cắt đường thẳng O’B ở K. Chứng minh rằng ba điểm O, I, K thẳng hàng.

CT
11 tháng 4 2019 lúc 13:45

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Trong đường tròn (O’) ta có AC và BC là hai tiếp tuyến cắt nhau tại C

Suy ra: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 (tính chất hai tiếp tuyến cắt nhau)

Mà O’I ⊥ O’A (gt)

CA ⊥ O’A (chứng minh trên)

Suy ra: O’I // CA => Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 (hai góc so le trong)

Suy ra: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hay tam giác CIO’ cân tại I => IC = IO’

Khi đó I nằm trên đường trung trực của O’C

Lại có: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 (tính chất hai tiếp tuyến cắt nhau)

KC ⊥ CA (gt)

O’A ⊥ AC (chứng minh trên)

Suy ra: KC // O’A => Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 (hai góc so le trong)

Suy ra: Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hay tam giác CKO’ cân tại K => KC = KO’

Khi đó K nằm trên đường trung trực của O’C

Mặt khác: OC = OO’ (= R)

Suy ra O, I, K nằm trên đường trung trực của O’C

Vậy O, I, K thẳng hàng.

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
JW
Xem chi tiết
QQ
Xem chi tiết
PA
Xem chi tiết
NT
Xem chi tiết
TK
Xem chi tiết
N0
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết