PB

Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Dây AC của đường tròn (O) tiếp xúc với đường tròn (O’) tại A. Dây AD của đường trong (O’) tiếp xúc với đường tròn (O) tại A. Gọi K là điểm đối xứng với A qua trung điểm I của OO’, E là điểm đối xứng với A qua B. Chứng minh rằng: Bốn điểm A, C, E, D cùng nằm trên một đường tròn

CT
23 tháng 2 2018 lúc 6:08

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Vì AB ⊥ KB nên AE ⊥ KB

Lại có: AB = BE (tính chất đối xứng tâm)

Suy ra: KA = KE (tính chất đường trung trực)     (3)

Ta có: IO = IO’ (gt)

IA = IK (chứng minh trên)

Tứ giác AOKO’ có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên nó là hình bình hành

Suy ra: OK // O’A và OA // O’K

CA ⊥ O’A (vì CA là tiếp tuyến của đường tròn (O’))

OK // O’A (chứng minh trên)

Suy ra: OK ⊥ AC

Khi đó OK là đường trung trực của AC

Suy ra: KA = KC (tính chất đường trung trực)     (4)

DA ⊥ OA (vì DA là tiếp tuyến của đường tròn (O))

O’K // OA (chứng minh trên)

Suy ra: O’K ⊥ DA

Khi đó O’K là đường trung trực của AD

Suy ra: KA = KD (tính chất đường trung trực)     (5)

Từ (3), (4) và (5) suy ra: KA = KC = KE = KD

Vậy bốn điểm A, C, E, D cùng nằm trên một đường tròn.3

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
HB
Xem chi tiết
AV
Xem chi tiết
AV
Xem chi tiết
LA
Xem chi tiết
PB
Xem chi tiết
HK
Xem chi tiết
NM
Xem chi tiết
PB
Xem chi tiết