PB

Cho hai đường tròn (O; R) và (O’; R’) tiếp xúc ngoài tại A (R > R’). Vẽ các đường kính AOB, AO’C. Dây DE của đường tròn (O) vuông góc với BC tại trung điểm K của BC. Gọi I là giao điểm của EC và đường tròn (O’). Chứng minh rằng ba điểm D, A, I thẳng hàng

CT
19 tháng 12 2018 lúc 2:59

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác ABD nội tiếp trong đường tròn (O) có AB là đường kính nên vuông tại D

Suy ra: AD ⊥ BD

Tứ giác BDCE là hình thoi nên EC // BD

Suy ra: EC ⊥ AD     (1)

Tam giác AIC nội tiếp trong đường tròn (O’) có AC là đường kính nên vuông tại I

Suy ra: AI ⊥ CE     (2)

Từ (1) và (2) suy ra AD trùng với AI

Vậy D, A, I thẳng hàng.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
SP
Xem chi tiết
PB
Xem chi tiết
NP
Xem chi tiết
LH
Xem chi tiết
DK
Xem chi tiết
UN
Xem chi tiết
PB
Xem chi tiết
TH
Xem chi tiết