PB

Cho hai đường tròn (O; 2cm), (O’; 3cm), OO’ = 6cm. Vẽ đường tròn (O’; 1cm) rồi kẻ tiếp tuyến OA với đường tròn đó (A là tiếp điểm). Tia O’A cắt đường tròn (O’; 3cm) ở B. Kẻ bán kính OC của đường tròn (O) song song với O’B, B và C thuộc cùng một nửa mặt phẳng có bờ OO’. Chứng minh rằng BC là tiếp tuyến chung của hai đường tròn (O; 2cm), (O’; 3cm).

CT
30 tháng 6 2018 lúc 13:07

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Xét tứ giác ABCO ta có:

AB // CO (gt)    (1)

Mà : AB = O’B – O’A = 3 – 1 = 2    (cm)

Suy ra: AB = OC = 2 (cm) (2)

Từ (1) và (2) suy ra: ABCO là hình bình hành

Lại có: OA ⊥ O’A (tính chất tiếp tuyến)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Suy ra: BC ⊥ OC và BC ⊥ O’B

Vậy BC là tiếp tuyến chung của hai đường tròn (O) và (O’)

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
DT
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
NV
Xem chi tiết
HN
Xem chi tiết
PB
Xem chi tiết
NP
Xem chi tiết
NN
Xem chi tiết