Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Trong không gian với hệ tọa độ Oxyz, cho điểm M (2;-1;-6) và hai đường thẳng
d 1 : x - 1 2 = y - 1 - 1 = z + 1 1 , d 2 : x + 2 3 = y + 1 1 = z - 2 2 Đường thẳng đi qua điểm M và cắt cả hai đường thẳng d₁, d₂ tại hai điểm A, B. Độ dài đoạn thẳng AB bằng:
A. √38
B. 2√10
C. 8
D. 12
Cho d : x + 1 3 = y - 1 2 = z - 3 - 2 và ∆ : x 1 = y - 1 1 = z + 3 2 . Biết (d), ∆ cắt nhau tại M. Tìm tọa độ M
Trong không gian hệ tọa độ Oxyz, cho đường thẳng Δ là giao tuyến của hai mặt phẳng (P): z-1= 0 và (Q): x+y+z-3 =0. Gọi d là đường thẳng nằm trong mặt phẳng (P), cắt đường thẳng: \(\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}\) và vuông góc với đường thẳng Δ. Phương trình đường thẳng d là?
Trong không gian với hệ tọa độ Oxyz, cho điểm M(3;3;-2) và hai đường thẳng d 1 : x - 1 2 = y - 2 3 = z 1 , d 2 : x + 1 - 1 = y - 1 2 = z - 2 4 . Đường thẳng d qua M cắt d 1 , d 2 lần lượt tại A và B. Độ dài đoạn thẳng AB bằng
A. 3
B. 2
C. 6
D. 5
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d : x - 2 1 = y - 5 2 = z - 2 1 , d ' : x - 2 1 = y - 1 - 2 = z - 2 1 và hai điểm A(a;0;0), B(0;0;b). Gọi (P) là mặt phẳng chứa d và d'; H là giao điểm của đường thẳng AA' và mặt phẳng (P). Một đường thẳng D thay đổi trên (P) nhưng luôn đi qua H đồng thời D cắt d và d' lần lượt tại B, B'. Hai đường thẳng cắt nhau tại điểm M. Biết điểm M luôn thuộc một đường thẳng cố định có véc tơ chỉ phương u → = ( 15 ; - 10 ; - 1 ) (tham khảo hình vẽ). Tính T= a+b
A. T = 8
B. T = 9
C. T = -9
D. 6
Trong không gian với hệ tọa độ oxyz, cho mặt phẳng (P): x+y+z-3=0 và đường thẳng d : x - 2 1 = y + 1 - 2 = z - 1 . Gọi I là giao điểm của mặt phẳng (P) với đường thẳng d. Điểm M thuộc mặt phẳng (P) có hoành độ dương sao cho IM vuông góc với d và I M = 4 14 có tọa độ là:
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng ∆ 1 : x + 1 3 = y - 2 1 = z - 1 2 v à ∆ 2 : x - 1 1 = y 2 = z + 1 3 . Phương trình đường thẳng song song với d : x = 3 y = - 1 + t z = 4 + t và cắt hai đường thẳng ∆1;∆2 là:
A. x = 2 y = 3 - t z = 3 - t
B. x = - 2 y = - 3 - t z = - 3 - t
C. x = - 2 y = - 3 + t z = - 3 + t
D. x = 2 y = - 3 + t z = 3 + t
Trong không gian với hệ tọa độ Oxyz, cho điểm A (1;2;1) và hai đường thẳng d 1 : x - 1 1 = y + 1 1 = z - 3 - 1 ; d 2 : x - 1 1 = y + 2 1 = z - 2 1 . Viết phương trình đường thẳng d song song với mặt phẳng (P):2x+3y+4z-6=0, cắt đường thẳng d1, d2 lần lượt tại M và N sao cho A M ⇀ . A N ⇀ = 5 và điểm N có hoành độ nguyên.
Tìm tọa độ giao điểm M của đường thẳng d:\(\left\{{}\begin{matrix}x=1+2t\\y=-2-t\\z=1-t\end{matrix}\right.\)và (P) :4x-y-z+5=0
A. M(1;1;2)
B. M(1;-1;2)
C. M(1;1;-2)
D. M(-1;-1;2)