TO

cho hai đa thức f(x)= (x-1)(x+3) và g(x)=x^3-ax^2+bx-3

xác định hệ số a,b của đa thức g(x) biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)

H24
14 tháng 4 2018 lúc 18:01

mik nghĩ 

bn có thể tham khảo ở link :

https://olm.vn/hoi-dap/question/902782.html 

~~ hok tốt ~ 

Bình luận (0)
TO
14 tháng 4 2018 lúc 18:04

là ren á bạn

Bình luận (0)
PQ
14 tháng 4 2018 lúc 18:22

Ta có : 

\(\left(x-1\right)\left(x+3\right)=0\) ( nghiệm của đa thức \(f\left(x\right)\) ) 

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)

Lại có : Nghiệm của đa thức \(f\left(x\right)\) cũng là nghiệm của đa thức \(g\left(x\right)\)  

+) Thay \(x=1\) vào nghiệm của đa thức \(g\left(x\right)=x^3-ax^2+bx-3=0\) ta được : 

\(1^3-a.1^2+b.1-3=0\)

\(\Leftrightarrow\)\(1-a+b-3=0\)

\(\Leftrightarrow\)\(a-b=1-3\)

\(\Leftrightarrow\)\(a-b=-2\) \(\left(1\right)\)

+) Thay \(x=-3\) vào nghiệm của đa thức \(g\left(x\right)=x^3-ax^2+bx-3=0\) ta được : 

\(\left(-3\right)^3-a.\left(-3\right)^2+b.\left(-3\right)-3=0\)

\(\Leftrightarrow\)\(-27-9a+b.\left(-3\right)-3=0\)

\(\Leftrightarrow\)\(9a-3b=-27-3\)

\(\Leftrightarrow\)\(9a-3b=-30\)

\(\Leftrightarrow\)\(\left(-3\right)\left(-3a+b\right)=\left(-3\right).10\)

\(\Leftrightarrow\)\(b-3a=10\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(a-b+b-3a=-2+10\)

\(\Leftrightarrow\)\(-2a=8\)

\(\Leftrightarrow\)\(a=\frac{8}{-2}\)

\(\Leftrightarrow\)\(a=-4\)

Do đó : 

\(a-b=-2\)

\(\Leftrightarrow\)\(-4-b=-2\)

\(\Leftrightarrow\)\(b=2-4\)

\(\Leftrightarrow\)\(b=-2\)

Vậy các hệ số a, b là \(a=-4\) và \(b=-2\)

Chúc bạn học tốt ~ 

Bình luận (0)
TO
14 tháng 4 2018 lúc 18:24

cảm mơn nha anh

Bình luận (0)
H24
13 tháng 2 2020 lúc 17:40

Tại sao f(x) = 0 vậy ?

Bình luận (0)
 Khách vãng lai đã xóa
H24
13 tháng 2 2020 lúc 17:42

Mình chưa học nghiệm nhưng cô cho bài mong mấy bạn giải thích hộ

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
DD
Xem chi tiết
VL
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
TT
Xem chi tiết
HH
Xem chi tiết
HL
Xem chi tiết
DL
Xem chi tiết
HK
Xem chi tiết