PB

Cho góc xOy cố định khác góc bẹt. Các điểm A và B theo thứ tự chuyển động trên các tia Ox và Oy sao cho OA = OB. Đường vuông góc với OA tại A và đường vuông góc với OB tại B cắt nhau ở M. Điểm M chuyển động trên đường nào ?

CT
8 tháng 8 2017 lúc 7:59

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét hai tam giác vuông MOA và MOB: ∠ (MAO) =  ∠ (MBO) = 90 0

OA = OB (gt)

OM cạnh huyền chung

Do đó:  ∆ MAO = ∆ MBO (cạnh huyền, cạnh góc vuông)

⇒ ∠ (AOM) =  ∠ (BOM)

A và B thay đổi, OA và OB luôn bằng nhau nên  ∆ MAO và  ∆ MBO luôn luôn bằng nhau do đó  ∠ (AOM) = ∠ (BOM)

Vậy khi A chuyển động trên Ox, B chuyển động trên Oy mà OA = OB thì điểm M chuyển động trên tia phân giác của góc xOy.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HD
Xem chi tiết
NH
Xem chi tiết
LN
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TG
Xem chi tiết