PB

Cho góc vuông xOy. Lấy các điểm I và K lần lượt trên các tia Ox và Oy. Đường tròn (I; OK) cắt tia Ox tại M (I nằm giữa O và M), đường tròn (K; OI) cắt tia Oy tại N (K nằm giữa O và N)

a, Chứng minh (I) và (K) luôn cắt nhau

b, Tiếp tuyến tại M của (I), tiếp tuyến tại N của đường tròn (K) cắt nhau tại C. Chứng minh tứ giác OMCN là hình vuông

c, Gọi A, B là các giao điểm của (I) và (K) trong đó B ở miền trong góc xOy. Chứng minh ba điểm A, B, C thẳng hàng

d, Giả sử IK thứ tự di động trên các tia OxOy sao cho OI + OK = a không đổi. Chứng minh đường thẳng AB luôn đi qua một điểm cố định

CT
15 tháng 3 2018 lúc 4:28

a, Chỉ ra |OI – OK| < IK < OI + OK => (1) và (k) luôn cắt nhau

b, Do OI=NK, OK=IM => OM=ON

Mặt khác OMCN là hình chữ nhật => OMCN là hình vuông

c, Gọi{L} = KB ∩ MC, {P} = IBNC => OKBI là Hình chữ nhật và BNMI là hình vuông

=> ∆BLC = ∆KOI

=>  L B C ^ = O K I ^ = B I K ^

mà  B I K ^ + I B A ^ = 90 0

L B C ^ + L B I ^ + I B A ^ = 180 0

d, Có OMCN là hình vuông cạnh a cố định

=> C cố định và AB luôn đi qua điểm C

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TT
Xem chi tiết
LA
Xem chi tiết
DH
Xem chi tiết
NB
Xem chi tiết
LQ
Xem chi tiết
PT
Xem chi tiết
NL
Xem chi tiết
PT
Xem chi tiết