NA

Cho góc vuông xOy, điểm M nằm trong góc đó. Gọi N là điểm đối xứng với M qua Ox, P là điểm đối xứng với M qua Oy. Chứng minh rằng P và N đối xứng nhau qua O.

TT
3 tháng 12 2021 lúc 22:58

Gọi giao điểm của MN và Ox là điểm A; giao điểm của MN và Oy là điểm B.

Ta có: N là điểm đối xứng với M qua Ox (gt).

           O \(\in\) Ox.

=> \(\left\{{}\begin{matrix}OA\perp MN.\\\text{ON = OM.(1)}\end{matrix}\right.\) 

Ta có: P là điểm đối xứng với M qua Oy (gt).

           O \(\in\) Oy.

=> \(\left\{{}\begin{matrix}OB\perp MP.\\\text{OM = OP.(2)}\end{matrix}\right.\)

Từ (1) và (2) => OP = ON = OM.

Xét tam giác NOM có: ON = OM (cmt).

=> Tam giác NOM cân tại O.

Mà OA là đường cao (do OA vuông góc MN).

=> OA là phân giác của ^NOM (Tính chất các đường trong tam giác cân).

=> ^NOA = ^AOM.

Xét tam giác MOP có: OP = OM (cmt).

=> Tam giác MOM cân tại O.

Mà OB là đường cao (do OB vuông góc MP).

=> OB là phân giác của ^MOP (Tính chất các đường trong tam giác cân).

=> ^MOB = ^BOP.

Ta có: ^NOA + ^AOM + ^MOB + ^BOP.

=  2. ^AOM + 2. ^MOB.

= 2. (^AOM + ^MOB).

= 2. ^AOB.

= 2. 90o = 180o.

=> 3 điểm N; O; P thẳng hàng.

Mà OP = ON (cmt).

=> O là trung điểm của NP.

=> P và N đối xứng nhau qua O (đpcm).

 

 

Bình luận (0)

Các câu hỏi tương tự
LT
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
LH
Xem chi tiết
PB
Xem chi tiết
GP
Xem chi tiết
PC
Xem chi tiết
OM
Xem chi tiết
JN
Xem chi tiết