PB

Cho góc vuông xOy, điểm A thuộc tia Oy sao cho OA = 2cm. Lấy B là một điểm bất kì thuộc tia Ox. Gọi C là trung điểm của AB. Khi điểm B di chuyển trên tia Ox thì điểm C di chuyển trên đường nào?

CT
9 tháng 3 2018 lúc 14:59

Giải bài 70 trang 103 Toán 8 Tập 1 | Giải bài tập Toán 8

- Cách 1:

Kẻ CH ⊥ Ox.

Ta có CB = CA (gt).

CH // AO (cùng vuông góc Ox)

⇒ HB = OH

⇒ CH là đường trung bình của tam giác AOB

⇒ CH = AO/2 = 1cm.

Điểm C cách tia Ox cố định một khoảng không đổi 1cm nên C di chuyển trên tia song song với Ox, cách Ox một khoảng bằng 1cm và nằm trong góc xOy.

- Cách 2:

Vì C là trung điểm của AB nên OC là trung tuyến ứng với cạnh huyền AB do đó OC = CA.

Điểm C di chuyển trên tia Em thuộc đường trung trực của OA.

Bình luận (0)
TH
10 tháng 9 2021 lúc 15:27

m:

Kẻ CH vuông góc với Ox

Ta có: CB = CA (gt) và CH // AO (cùng vuông góc với Ox)

⇒ CH = 12AO = 12.2 = 1 (cm)

Điểm C cách tia Ox cố định một khoảng không đổi 1cm nên điểm C di chuyển trên đường thẳng m song song với Ox và cách Ox một khoảng 

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
GP
Xem chi tiết
TH
Xem chi tiết
TH
Xem chi tiết
ND
Xem chi tiết
HN
Xem chi tiết
CN
Xem chi tiết
LN
Xem chi tiết
NT
Xem chi tiết
PB
Xem chi tiết