Bài 9: Tính chất ba đường cao của tam giác

BS

Cho góc nhọn xOy. Trên hai cạnh Ox và Oy lần lượt lấy hai điểm A và B sao cho OA=OB. Tia phân giác của góc xOy cắt AB tại I.

a) Gọi D là hình chiếu của điểm A trên Oy. C là giao điểm của AD với OI. Chứng minh: Bx ⊥ Ox.

b) Gỉa sử góc xOy=\(60^0\), OA=OB=6cm. Tính độ dài đoạn thẳng OC.

NT
28 tháng 7 2022 lúc 21:18

a: Xét ΔBOA có

OI là đường cao

AD là đường cao

OI cắt AD tại C

DO đó: C là trực tâm

=>BC vuông góc với Ox

b: Xét ΔOAB cân tại O có góc AOB=60 độ

nên ΔOAB đều

mà AD là đường cao

nên AD là đường trung tuyến ứng với BO

Ta có: I là trung điểm của AB

nên IA=IB=3cm

\(OI=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)

\(OC=\dfrac{2}{3}\cdot OI=2\sqrt{3}\left(cm\right)\)

Bình luận (0)

Các câu hỏi tương tự
MT
Xem chi tiết
TD
Xem chi tiết
VH
Xem chi tiết
DA
Xem chi tiết
GN
Xem chi tiết
AQ
Xem chi tiết
TT
Xem chi tiết
TD
Xem chi tiết
SK
Xem chi tiết