Cho tam giác ABC có AB=AC=5cm BC=6cm đường cao AH xuất phát từ đỉnh A của tam giác ABC (H thuộc BC) a)chứng minh tam giác AHB =AHC b)chứng minh AH là tia phân giác của góc A c)tính độ dài các đoạn thẳng BH và AH
Cho tam giác ABC cân tại đỉnh A. Hai đường cao xuất phát từ đỉnh B và đỉnh C cắt nhau tại M. Hãy tìm các góc của tam giác ABC, biết \(\widehat{BMC}=140^0\) ?
Chứng minh rằng một tam giác có hai đường cao (xuất phát từ các đỉnh của hai góc nhọn) bằng nhau thì tam giác đó là tam giác cân. Từ đó suy ra một tam giác có ba đường cao bằng nhau thì tam giác đó là tam giác đều.
Bài 1:
a) Cho tam giác ABC có các đường cao BD và CE bằng nhau. Chứng minh rằng tam giác đó là tam giác cân.
b) Cho tam giácABC cân tại A, đường cao CH cắt tia phân giác của góc A tại D. Chứng minh rằng BD vuông góc với AC.
Cho tam giác ABC. Qua mỗi đỉnh A, B, C kẻ các đường thẳng song song với cạnh đối diện, chúng cắt nhau tạo thành tam giác DEF (h.17)
a) Chứng minh rằng A là trung điểm của EF
b) Các đường cao của tam giác ABC là các đường trung trục của tam giác nào ?
Cho tam giác ABC không vuông. Gọi H là trực tâm của nó
a) Hãy chỉ ra các đường cao của tam giác HBC. Từ đó hãy chỉ ra trực tâm của tam giác đó
b) Tương tự, hãy lần lượt chỉ ra trực tâm của các tam giác HAB và HAC
Cho tam giác ABC cân tại A có đường cao BD và CE cắt nhau tại H.a,chứng minh tam giác ADB=tam giác AEC,b,Chứng minh tam giác HDE là tam giác cân,c,So sánh HB và HD,d,Gọi M là trung điểm của HC,N là trung điểm của HB,I là giao điểm của BM và CN.Chứng minh ba điểu A,H,I thẳng hàng
help với:(((
Cho tam giác ABC vuông tại A. Kẻ đường phân giác BD của tam giác ABC, trên Bc lấy E sao cho BE=BA. a) CM: Tam giác ABD = tam giác EBD và ED vuông góc với BC b) Gọi F là giao điểm của AB và và DE. CM: tam giác BFC cân c) Cho BD cắt FC tại N, trên tia đối NB lấy M sao cho NM=ND. CM: FM // CD. d) Tính chu vi tam giác ABC , biết AB/AC= 3/4 ; BC=15 cm CẦN GẤP :)
Cho tam giác ABC không là tam giác cân. Khi đó trực tâm của tam giác ABC là giao điểm của :
(A) Ba đường trung tuyến (B) Ba đường phân giác
(C) Ba đường trung trực (D) Ba đường cao
Hãy chọn phương án đúng ?