Ta có VT = 2010/2011 -sinx/2011 + 1 + sinx/(2011-sinx) = 4021/2011 +[(2011sinx - 2011sinx + sin2 x)/(2011-sinx) = 4021/2011 + sin2 x/(2011-sinx) > 4021/2011
Ta có VT = 2010/2011 -sinx/2011 + 1 + sinx/(2011-sinx) = 4021/2011 +[(2011sinx - 2011sinx + sin2 x)/(2011-sinx) = 4021/2011 + sin2 x/(2011-sinx) > 4021/2011
Cho góc nhọn có số đo là x. Cm bđt:
\(\frac{2010-sinx}{2011}+\frac{2011}{2011-sĩn}>\frac{4021}{2011}\)
\(\left(x+\sqrt{\left(x^2+2011\right)}\right).\left(y+\sqrt{\left(y^2+2011\right)}\right)=2011\). Tính gía trị biểu thức:
A=\(y=\frac{x^{2011^{ }}+y^{2011}}{\left(x^{2011}+y^4+1\right)^{2011}}\)
b. Cho p,q là 2 số nguyên tố lớn hơn 3.Biets rằng p-q=2
Chứng minh: (p+q) chia hết cho 12
cho góc nhọn \(\alpha\)cmr: \(\sin^{2011}\alpha+\cos^{2012}\alpha< 1\)
Tìm các số hữu tỉ x,y thỏa mãn đăng thức
\(x\left(\sqrt{2011}+\sqrt{2010}\right)+y\left(\sqrt{2011}-\sqrt{2010}\right)=\sqrt[3]{2011}+\sqrt[3]{2010}\)
Tìm các số hữu tỉ x , y thỏa mãn :
\(\left(\sqrt{2011}+\sqrt{2010}\right)+y\left(\sqrt{2011}-\sqrt{2010}\right)=\sqrt{2011^3}+\sqrt{2010^3}\).
Viết phương trình các đường thẳng y = -x + 2010 và cắt đths y=x2/2011 tại điểm có tung độ là 2011
\(T=\sqrt{1+2010^2+\frac{2010^2}{2011^2}}+\frac{2010}{2011}\)
CHỨNG MINH RẰNG T LÀ MỘT SỐ NGUYÊN. GIÚP TUI VỚI MỌI NGƯỜI ƠI
Chứng minh rằng \(sin^{2011}\alpha+cos^{2012}\alpha< 1\)
Các bạn giải giúp mình nha!
Câu 1: Tìm tất cả các số nguyên x=>y=>z=>0 sao cho:
xyz + xy+ yz + xz +x+y+z=2011
Câu 2 Giải phương trình :
4(x^2+2)^2 = 25(x^3+1)
Câu 3 Tìm Max ,Min của
P= 2x^2 - xy - y^2
Với x, y thỏa mãn: x^2 + 2xy+ 3y^2=4
Câu 4 Cho a,b,c là độ dài ba cạnh của tam giác chứng minh:
1/(a^2+bc) + 1/(b^2+ac)+1/(c^2+ab) <= (a+b+c)/(2abc)
Câu 5 Tìm các số hữu tỉ x,y thỏa mãn:
x(căn bậc hai của(2011) + căn bậc hai của(2010)) + y(căn bậc hai của(2011) - căn bậc hai của(2010)) = Căn bậc hai của(2011^3) + Căn bậc hai của(2010^3)