cho 2 số tự nhiên m và n khác 0 thỏa mãn (m+1/n) + (n+1/m) là số tự nhiên. chứng minh ƯCLN(m;n)<= căn bậc 2 (m+n)
giúp mk vs
Chứng minh rằng nếu các số nguyên dương m,n thỏa mãn 2m+1 chia hết cho 2n+1 thì m chia hết cho n. Các bạn giúp mình với, mình cần gấp
chứng minh rằng nếu m, n là hai số thỏa mãn 19/m/+5/n/>=2000 thì phương trình sau có nghiệm 20mx²+5nx+100-m=0
Cho hai số thực m và n khác 0 thỏa mãn \(\frac{1}{m}+\frac{1}{n}=\frac{1}{2}\). Chứng minh rằng trong hai phương trình \(x^2+mx+n=0\)và \(x^2+nx+m=0\)có ít nhất 1 PT có nghiệm .
Cho m, n là những số nguyên dương thỏa mãn: \(\frac{m}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{1318}+\frac{1}{1319}\)
Chứng minh rằng: m chia hết cho 1979
Cho hai số tự nhiên m, n thỏa mãn \(\frac{m+1}{n}+\frac{n+1}{m}\)có giá trị là một số nguyên. Gọi d là ước chung lớn nhất của m và n. Chứng minh rằng: \(d\le\sqrt{m+n}\)
Cho \(m,n,p\) là các số thực không âm thỏa mãn \(m+n+p=1.\)
Chứng minh rằng: \(\frac{1+m^2}{1+n^2}+\frac{1+n^2}{1+p^2}+\frac{1+p^2}{1+m^2}\le\frac{7}{2}\)
Cho 0o < x < 90o thỏa mãn
\(\frac{sin^4x}{m}+\frac{cos^4x}{n}=\frac{1}{m+n}\)\(\left(m,n>0\right)\)
Chứng minh \(\frac{sin^{2008}x}{m^{1003}}+\frac{cos^{2008}x}{n^{1003}}=\frac{1}{\left(m+n\right)^{1003}}\)
Cho các số dương m, n, p thỏa mãn: \(m^2+2n^2\le3p^2\). Chứng minh rằng: \(\frac{1}{m}+\frac{2}{n}\ge\frac{3}{p}\)