Tam giác đồng dạng

H24

Cho G là trọng tâm của tam giác ABC. Qua G vẽ đường thẳng song song với AB cắt BC tại D. Chứng minh rằng BD=\(\dfrac{1}{3}\)BC.

NT
20 tháng 1 2021 lúc 22:41

Gọi E là trung điểm của AB

Xét ΔABC có

CE là đường trung tuyến ứng với cạnh AB(E là trung điểm của AB)

G là trọng tâm của ΔABC(Gt)

Do đó: G∈CE(Tính chất ba đường trung tuyến của tam giác)

⇒GD//BE

Xét ΔABC có

CE là đường trung tuyến ứng với cạnh AB(E là trung điểm của AB)

G là trọng tâm của ΔABC(gt)

Do đó: \(CG=\dfrac{2}{3}CE\)(Tính chất ba đường trung tuyến của tam giác)(1)

Ta có: CG+GE=CE(G nằm giữa C và E)

⇔GE=CE-EG

hay \(GE=\dfrac{1}{3}CE\)(2)

Từ (1) và (2) suy ra \(\dfrac{CG}{GE}=\dfrac{2}{1}\)

Xét ΔCEB có 

G∈CE(cmt)

D∈BC(gt)

GD//EB(cmt)

Do đó: \(\dfrac{GC}{EG}=\dfrac{DC}{BD}\)(Định lí Ta lét)

\(\dfrac{DC}{BD}=2\)

hay DC=2BD

Ta có: BD+DC=BC(D nằm giữa B và C)

⇔2BD+BD=BC

⇔3BD=BC

hay \(BD=\dfrac{1}{3}BC\)(đpcm)

Bình luận (0)
TT
20 tháng 1 2021 lúc 22:36

Từ điểm C kẻ đường trung tuyến CE của tam giác ABC

Ta có GD sog sog AB (gt).

 Suy ra : GD sog sog BE ( E thuộc AB)

Xét Tam giác ABC: G là trọng tâm (gt)

 Suy ra: GE/CE = 1/3 (Tc trọng tâm trong tgiác)

Xét tam giác BCE có: GD sog sog BE (cmt)

 Suy ra: BD/BC = GE/CE   (định lý Talet)

mà:  GE/CE = 1/3 (cmt)

 Suy ra: BD = 1/3 BC      (đpcm)

 

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
MA
Xem chi tiết
HB
Xem chi tiết
KH
Xem chi tiết
MT
Xem chi tiết
BZ
Xem chi tiết