Bài 3: Hàm số liên tục

H24

cho f(x)=\(\left\{{}\begin{matrix}2-ax\left(x\le-1\right)\\x^2-bx+2\left(-1< x< 1\right)\\4x+a\left(x\ge1\right)\end{matrix}\right.\) tìm a,b để hàm số liên tục trên R

help pls 

NL
8 tháng 3 2021 lúc 23:26

\(f\left(-1\right)=\lim\limits_{x\rightarrow-1^-}f\left(x\right)=\lim\limits_{x\rightarrow-1^-}\left(2-ax\right)=2+a\)

\(\lim\limits_{x\rightarrow-1^+}f\left(x\right)=\lim\limits_{x\rightarrow-1^+}\left(x^2-bx+2\right)=3+b\)

\(f\left(1\right)=\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}\left(4x+a\right)=4+a\)

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}\left(x^2-bx+2\right)=3-b\)

Hàm liên tục trên R khi và chỉ khi:

\(\left\{{}\begin{matrix}2+a=3+b\\4+a=3-b\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-1\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
BT
Xem chi tiết
SK
Xem chi tiết
LH
Xem chi tiết
JP
Xem chi tiết
TN
Xem chi tiết
SK
Xem chi tiết
PN
Xem chi tiết
JP
Xem chi tiết