NL

Cho f(x) là một hàm số thỏa mãn \(f\left(2x+3\right)=x^3+3x^2-4x+5.\)Tính \(\left(f\left(-\sqrt[3]{2013}\right)\right)\)

H24
16 tháng 10 2016 lúc 22:00

\(8f\left(2x+3\right)=8x^3+36x^2+54x+27-3\left(4x^2+12x+9\right)-25\left(2x+3\right)+115=\left(2x+3\right)^3-3\left(2x+3\right)^2-25\left(2x+3\right)+115\)
\(\Rightarrow f\left(x\right)=\frac{x^3-3x^2-25x+115}{8}\)
ĐẾn đây ai làm tiếp hộ vs 

Bình luận (0)
BV
16 tháng 10 2016 lúc 22:10

Ta có: \(8.f\left(2x+3\right)=8x^3+24x^2-32x+40\)
                        \(=\left(2x+3\right)^3-3\left(2x+3\right)-25\left(2x+3\right)+115\)
Đặt \(2x+3=X\)ta có: \(8f\left(X\right)=X^3-3X-25X+115\)
   Vậy công thức của hàm f(x ) là: \(f\left(x\right)=\frac{x^3-3x^2-25x+115}{8}\).
Ta có: 
 \(-f\left(\sqrt[3]{2013}\right)=-\frac{\left(\sqrt[3]{2013}\right)^3-3.\left(\sqrt[3]{2013}\right)^2-25\sqrt[3]{2013}+115}{8}\).
Các bạn làm tiếp và kiểm tra lại phần tính toán giúp mình nhé !

Bình luận (0)
H24
16 tháng 10 2016 lúc 22:18

Số lẻ lắm cô vân ơi , 

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
BD
Xem chi tiết
VH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
KN
Xem chi tiết