Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho đa thức: f(x)=ax2 + bx +c thỏa mãn f(1)=f(-1). CM: f(x)=f(-x) với mọi giá trị của x.
Cho đa thức f(x)=a*x^2+bx+c thỏa mãn f(1)=f(-1) chứng minh rằng f(x)=f(-x) với mọi giá trị x
1,Tìm các hệ số AB của đa thức f(x) = ax + b, biết : f(1)=1; f(2)=4
2, cho đa thứcf(x) : ax mũ 2 + bx + c = 0 ( vs mọi giá trị x ) . CMR : a=b=c=0
3, Cho đa thức f(x) thỏa mãn, f(x) + x. f(-x) = x+1 vs mọi giá trị của x. Tính f(1)
Cho đa thức f(x) = ax2 + bx + c ( với a, b, c là hằng số ) thỏa mãn điều kiện f(1) = f(-1). Chứng minh rằng f(-x) = f(x) với mọi x
a) Cho đa thức f(x)= 5.f(-2).x2 thỏa mãn với mọi x. Tính f(-3)
b) Cho f(x) thỏa mãn: f(x) + x.f(-x)=x+1 với mọi x. Tính f(-1)
c) Cho f(x)= ax2 + bx + c thỏa mãn f(1)=f(-1). Chứng minh rằng: f(x)=f(-x)
Giúp mình nha. Mình cảm ơn trước nhé :P
1) Tính giá trị của biểu thức 4a-b/3a+3 + 4b-a/3b+3 với a-b=3; a khác 1; b khác 1
2) cho đa thức f(x)= ax^2+bx+c thỏa mãn f(3)=f(-3).
Chứng minh rằng f(x)=f(-x)
Giup minh vs a!minh dang can gap a
Cho f(x)=ax\(^2\)+bx+c. Biết f(0),f(1),f(2)là số nguyên. Chứng minh rằng: f(x) luôn nhận giá trị nguyên với mọi x.
Cho f(x) = ax^2 + bx + c, biết f(0), f(1), f(2) đều là các số nguyên. Chứng minh rằng: f(x) luôn nhận giá trị nguyên với mọi x thuộc Z
cho f(x)=\(ax^2\)+bx+c . biết f(0) , f(1) , f(2) đều là các số nguyên .chứng minh f(x) luôn nhận giá trị nguyên với mọi x nguyên