Violympic toán 8

HV

Cho \(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0;x\ne y,y\ne z,z\ne x\)

Tính Q=\(\frac{x}{\left(y-z\right)^2}+\frac{y}{\left(z-x\right)^2}+\frac{z}{\left(x-y\right)^2}\)

HY
13 tháng 3 2020 lúc 19:41

\(\frac{x}{y-z}+\frac{y}{z-x}+\frac{z}{x-y}=0\\ =\frac{x}{y-z}=-\left(\frac{y}{z-x}+\frac{z}{x-y}\right)\\ =\frac{x}{\left(y-x\right)^2}=-\left(\frac{y}{z-x}+\frac{z}{x-y}\right).\frac{1}{y-x}=\frac{-xy+y^2-z^2+xz}{\left(z-x\right)\left(x-y\right)\left(y-z\right)}\left(1\right)\)

Tự làm với 2 phân thức còn lại, ta có:

\(\frac{y}{\left(z-x\right)^2}=\frac{-x^2+z^2+xy-yz}{\left(z-x\right)\left(x-y\right)\left(y-z\right)}\left(2\right)\)

\(\frac{z}{\left(x-y\right)^2}=\frac{x^2-y^2-xz+yz}{\left(z-x\right)\left(x-y\right)\left(y-z\right)}\left(3\right)\)

Cộng 3 vế lại với nhau ta có: \(Q=\frac{x}{\left(y-x\right)^2}+\frac{y}{\left(z-x\right)^2}+\frac{z}{\left(x-y\right)^2}=0\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
H24
Xem chi tiết
MN
Xem chi tiết
NH
Xem chi tiết
LD
Xem chi tiết
MK
Xem chi tiết
NS
Xem chi tiết
MN
Xem chi tiết
MN
Xem chi tiết
NT
Xem chi tiết