Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

CV

 

cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1;\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0.tinhA=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)

SN
29 tháng 5 2018 lúc 17:44

Câu hỏi của Tăng Thiện Đạt - Toán lớp 8 - Học toán với OnlineMath

Tham khảo nhé mk làm rồi !

Bình luận (0)
VL
24 tháng 12 2018 lúc 21:25

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow ayz+bxz+cxy=0\)

\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)

\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1-2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)\)

\(=1-2.\frac{cxy+bxz+ayz}{abc}=1-2.0=1\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
SN
Xem chi tiết
LT
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
PS
Xem chi tiết
NQ
Xem chi tiết
HM
Xem chi tiết