a/b=c/d=a/c=b/d=a+b/c+d=(a+b)^2/(c+d)^2=(a+b/c+d)^2 (1)
a/b=c/d=a/c=b/d=(a/c)^2=(b/d)^2=a^2/c^2=b^2/d^2=a^2+b^2/c^2+d^2 (2)
(1),(2)=> (a+b/c+d)^2=a^2+b^2/c^2+d^2
a/b=c/d=a/c=b/d=a+b/c+d=(a+b)^2/(c+d)^2=(a+b/c+d)^2 (1)
a/b=c/d=a/c=b/d=(a/c)^2=(b/d)^2=a^2/c^2=b^2/d^2=a^2+b^2/c^2+d^2 (2)
(1),(2)=> (a+b/c+d)^2=a^2+b^2/c^2+d^2
Cho \(\frac{a}{b}=\frac{c}{d}\)
cmr : \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
CMR:
\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
Bài 5: cho \(\frac{a}{b}=\frac{c}{d}\)
Chứng mình rằng
b) \(\frac{a}{b}=\frac{a^2-b^2}{c^2-d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
giải nhanh giúp mình với mai nộp rồi cảm ơn mình tick cho
1 Cho \(\frac{a}{b}=\frac{c}{d}\)
CMR: a, \(\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\)
Cho \(\frac{a}{b}\)=\(\frac{c}{d}\)và b+d\(\ne\)0
CM:\(\frac{a^2+c^2}{b^2+d^2}\)=\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Giúp mình với:
1. Cho 2 số nguyên a và b ( b \(\ne\)0 ). Khẳng định nào dưới đây là đúng ?
A. \(\frac{-\left(-a\right)}{-b}=\frac{-a}{-b}\) B. \(\frac{-a}{-b}=\frac{-a}{-\left(-b\right)}\) C. \(\frac{-\left(-a\right)}{-b}=\frac{a}{b}\) D. \(\frac{-\left(-a\right)}{-\left(-b\right)}=\frac{a}{b}\)
2. Cho 2 phân số bằng nhau \(\frac{a}{b}=\frac{c}{d}\) (a,b,c,d \(\varepsilon\)Z; b,d \(\ne\)0). Chứng minh rằng \(\frac{a\pm b}{_{ }b}=\frac{c\pm d}{d}\)
Cho bốn số \(a;b;c;d\in Z\)Chứng minh rằng nếu \(\frac{a}{b}=\frac{c}{d}\)thì\(\frac{a+b-c-d}{a-b-c+d}-\frac{2\left(b+d\right)}{\left(a+c\right)+\left(b+d\right)}=1\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)CMR \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\). Cmr: \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)