cho \(\frac{a}{b}=\frac{c}{d}\)
Chứng minh:a) \(\frac{a}{b}=\frac{11a+9c}{11b+9d}\)
b) \(\frac{3a^2+5c^2}{3b^2+5d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Cho \(\frac{a}{b}=\frac{c}{d}\) . CMR:
a) \(\frac{a}{b}=\frac{11a+9c}{11b+9d}\) ; b) \(\frac{3a^2+5c^2}{3b^2+5d^2}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
Cho \(\frac{a}{b}=\frac{c}{d}\). Chứng minh:
a) \(\frac{\left(a-b\right)^3}{\left(c-d\right)^3}=\frac{3a^2+2b^2}{3c^2+2d^2}\)
b)\(\frac{4a^4+5b^4}{4c^4+5d^4}=\frac{a^2b^2}{c^2d^2}\)
c)\(\left(\frac{a-b}{c-d}\right)^{2005}=\frac{2a^{2005}-b^{2005}}{2c^{2005}-d^{2005}}\)
d)\(\frac{2a^{2005}+5b^{2005}}{2c^{2005}+5d^{2005}}=\frac{\left(a+b\right)^{2005}}{\left(c+d\right)^{2005}}\)
e)\(\frac{\left(20a^{2006}+11b^{2006}\right)^{2007}}{\left(20a^{2007}-11b^{2007}\right)^{2006}}=\frac{\left(20c^{2006}+11d^{2006}\right)^{2007}}{\left(20c^{2007}-11d^{2007}\right)^{2006}}\)
f)\(\frac{\left(20a^{2007}-11c^{2007}\right)^{2006}}{\left(20a^{2006}+11c^{2006}\right)^{2007}}=\frac{\left(20b^{2007}-11d^{2007}\right)^{2006}}{\left(20b^{2006}+11d^{2006}\right)^{2007}}\)
CMR Nếu \(\frac{a}{b}=\frac{c}{d}\)thì:
a)\(\left(\frac{a-b}{c-d}\right)^4=\frac{a^4+b^4}{c^4+d^4}\)
b)\(\frac{5a+3b}{5a-3b}=\frac{5c+3d}{5c-3d}\)
c)\(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)
Cho \(\frac{a}{b}=\frac{c}{d}.\)Chứng minh.
a)\(\frac{3a+5b}{3a-5b}=\frac{3c+5d}{3c-5d}\)
b)\(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\)
\(\frac{a.b}{c.d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
Cho dãy tỉ số bằng nhau \(\frac{3a+b+c+d}{a}=\frac{a+3b+c+d}{b}=\frac{a+b+3c+d}{c}=\frac{a+b+c+3d}{d}\)
Tính Q=\(\left(\frac{a+b}{c+d}\right)^2+\left(\frac{b+c}{a+d}\right)^2+\left(\frac{c+d}{a+b}\right)^2+\left(\frac{a+d}{b+c}\right)^2\)
Cho tỉ lệ thức a/b=c/d CMR :
a) \(\frac{7a+8b}{7a-8b}=\frac{7c+8d}{7c-8d}\)
b) \(\frac{11a-5b}{3a+4b}=\frac{11c-5d}{3c+4d}\)
c) \(\frac{a.b}{c.d}=\frac{a^2-b^2}{c^2-d^2}\)
d) \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)
e) \(\frac{ab}{cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
help me 3 l-i-k-e
Đặt\(\frac{a}{b}=\frac{c}{d}=k\)=>a=bk ; c=dk
VT= \(\frac{3a^2-4ab+5b^2}{2b^2+3ab}=\frac{3b^2k^2-4b^2k+5b^2}{2b^2+3b^2k}=\frac{b^2\left(3k^2-4k+5\right)}{b^2\left(2+3k\right)}=\frac{3k^2-4k+5}{2+3k}\)
VP = \(\frac{3c^2-4cd+5d^2}{2c^2+3cd}=\frac{3d^2k^2-4d^2k+5d^2}{2d^2+3d^2k}=\frac{d^2\left(3k^2-4k+5\right)}{d^2\left(2+3k\right)}=\frac{3k^2-4k+5}{2+3k}\)
nhận thấy VT=VP suy ra đpcm
từ \(\frac{a}{b}\)=\(\frac{c}{d}\)chứng minh rằng;
\(\frac{a}{a-b}\)=\(\frac{c}{c-d}\)\(\frac{a+b}{b}=\frac{c+d}{d}\)\(\frac{5a+3b}{5a-3b}=\frac{5c=3d}{5c-3d}\)\(\frac{^{b^2}}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)