Cho \(\frac{a}{b}<\frac{c}{d}\Rightarrow\)ad<bc
Ta so sánh:\(\frac{a}{b}và\frac{a+c}{b+d}\)
\(\Leftrightarrow\frac{a\left(a+c\right)}{b\left(a+c\right)}và\frac{\left(a+c\right)a}{\left(b+d\right)a}\)
\(\Leftrightarrow\frac{aa+ac}{ba+bc}và\frac{aa+ca}{ba+da}\)
Vì aa+ac=aa+ca nên ta so sánh ba+bc và ba+da
Vì ba=ba nên ta so sánh bc và da
Mà bc>da \(\Rightarrow\)ba+bc>ba+da
\(\Rightarrow\)\(\frac{aa+ac}{ba+bc}<\frac{aa+ca}{ba+da}\)
\(\Rightarrow\)\(\frac{a}{b}<\frac{a+c}{b+d}\)(1)
Ta so sánh:\(\frac{a+c}{b+d}và\frac{c}{d}\)
\(\Leftrightarrow\frac{\left(a+c\right)c}{\left(b+d\right)c}và\frac{\left(a+c\right)c}{\left(a+c\right)d}\)
\(\Leftrightarrow\frac{ac+cc}{bc+dc}và\frac{ac+cc}{ad+cd}\)
Vì ac+cc=ac+cc nên ta so sánh bc+dc và ad+cd
Vì dc=cd nên ta so sánh bc và ad
Mà bc>ad
\(\Rightarrow\frac{ac+cc}{bc+dc}<\frac{ac+cc}{ad+cd}\)
\(\Rightarrow\frac{a+c}{b+d}<\frac{c}{d}\)(2)
Từ (1) và (2):
\(\Rightarrow\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}\)
a/b<c.d
=>ad<bc
=> ad+ab<bc+ab
=> a*(b+d)<b*(a+c)
=>a/b<a+c/b+d (1)
Lại có ad < bc
=> ad + cd < bc + cd
=> d*(a+c)<c*(b+d)
=>c/d>a+c/b+d (2)
Từ (1) và (2)
=> a/b<a+c/b+d<c/d
=> DPCM