-Ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=>\(\frac{a}{b}=1;\frac{b}{c}=1;\frac{c}{a}=1\)
\(a=b;b=c;c=a\)
\(a=b=c\)
-Mà \(a=2015\)
-Nên\(b=c=2015\)
-Ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
=>\(\frac{a}{b}=1;\frac{b}{c}=1;\frac{c}{a}=1\)
\(a=b;b=c;c=a\)
\(a=b=c\)
-Mà \(a=2015\)
-Nên\(b=c=2015\)
Biết : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\left(a\ne0;b\ne0;c\ne0\right)\)
Tính giá trị biểu thức :\(\frac{a^{670}.b^{672}.c^{673}}{a^{2015}}\)
cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)và\(a+b+c\ne0\)tính \(\frac{a^{2010}.c^5}{b^{2015}}\)
Cho \(\frac{a}{b}=\frac{c}{d}\).Chứng minh::\(\left(\frac{a-b}{c-d}\right)^{2015}=\frac{a^{2015}-b^{2015}}{c^{2015}-d^{2015}}\)với \(b,d\ne0,c\ne d\)
cho dãy tỉ số bằng nhau
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}\)
\(=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
tính giá trị biểu thức \(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(\left(a,b,c,d\ne0;a+b+c+d\ne0;a+b\ne0;b+c\ne0;c+d\ne0;d+a\ne0\right)\)
1. Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a};a+b+c\ne0;a=2003\) . Tính b,c
2. CHo \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a};a+b+c\ne0\). Tính \(M=\frac{a^3b^2c^{1930}}{b^{1935}}\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) \(\left(a,b,c,d\ne0;a+b+c+d\ne0\right)\)
Tính: \(M=\frac{3a-2b}{c+d}+\frac{3b-2c}{d+a}+\frac{3c-2d}{a+b}+\frac{3d-2a}{b+c}\)
Cho \(\frac{b+c+1}{a}\)=\(\frac{a+c+2}{b}\)=\(\frac{a+b-3}{c}\)=\(\frac{1}{a+b+c}\)(\(a,b,c\ne0;a+b+c\ne0\))
Tính M=(a-b)(b-c)(c-a)
Cho \(a+b+c+d\ne0\)sao cho \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)Tính\(G=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
Cho \(abc\ne0\) và \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính \(P=\frac{a+b}{a}.\frac{b+c}{b}.\frac{c+a}{c}\)