CD

Cho \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}\). CMR: 4(a-b)(b-c) = (c-a)\(^2\)

BH
19 tháng 10 2016 lúc 17:47

\(\frac{a}{2003}=\frac{b}{2004}=\frac{a-b}{2003-2004}=-\left(a-b\right)\) = -(b-c)=\(\frac{c-a}{2}\)

=> -(a-b).(-(b-c)=\(\frac{c-a}{2}.\frac{c-a}{2}=\frac{\left(c-a\right)^2}{4}\)

<=> 4.(a-b).(b-c)=(c-a)2

Bình luận (0)
NN
26 tháng 10 2020 lúc 20:03

Đặt \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\left(k\ne0\right)\)

\(\Rightarrow a=2003k\)\(b=2004k\)\(c=2005k\)

Ta có: \(4\left(a-b\right)\left(b-c\right)=4\left(2003k-2004k\right)\left(2004k-2005k\right)\)

\(=4.\left(-k\right).\left(-k\right)=4k^2\)(1)

Mặt khác ta có: \(\left(c-a\right)^2=\left(2005k-2003k\right)^2=\left(2k\right)^2=4k^2\)(2)

Từ (1) và (2) \(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
LD
26 tháng 10 2020 lúc 20:04

Đặt \(\frac{a}{2003}=\frac{b}{2004}=\frac{c}{2005}=k\Rightarrow\hept{\begin{cases}a=2003k\\b=2004k\\c=2005k\end{cases}}\)

*\(4\left(a-b\right)\left(b-c\right)=4\left(2003k-2004k\right)\left(2004k-2005k\right)\)

\(=4\left(-k\right)\left(-k\right)=4k^2\)(1)

*\(\left(c-a\right)^2=\left(2005k-2003k\right)^2=\left(2k\right)^2=4k^2\)(2)

Từ (1) và (2) => đpcm

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NL
Xem chi tiết
LL
Xem chi tiết
TD
Xem chi tiết
TH
Xem chi tiết
TC
Xem chi tiết
HT
Xem chi tiết
LN
Xem chi tiết
PT
Xem chi tiết
NP
Xem chi tiết