PT

Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\).Chứng minh \(\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}=\frac{1}{a^{2017}+b^{2017}+c^{2017}}\)

BV
22 tháng 8 2016 lúc 15:30

Có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
 \(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
\(\Leftrightarrow\frac{a+b}{a.b}=\frac{-\left(a+b\right)}{c\left(a+b+c\right)}\)
\(\Leftrightarrow\left(a+b\right)c\left(a+b+c\right)=-\left(a+b\right)ab\)
\(\Leftrightarrow\left(a+b\right)\left(ca+cb+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(c+a\right)\left(c+b\right)=0.\)
Vậy: hoặc a + b = 0 hoặc c + a = 0 hoặc c + b =0.
Vai trò của a, b, c như nhau nên giả sử \(a+b=0\Leftrightarrow a=-b.\)
Khi đó: \(\frac{1}{a^{2007}}+\frac{1}{b^{2007}}+\frac{1}{c^{2007}}=\frac{1}{a^{2007}}+\frac{1}{\left(-a\right)^{2007}}+\frac{1}{c^{2007}}=\frac{1}{c^{2007}}.\)
           \(\frac{1}{a^{2007}+b^{2007}+c^{2007}}=\frac{1}{a^{2007}+\left(-a\right)^{2007}+c^{2007}}=\frac{1}{c^{2007}}.\)
Vậy: \(\frac{1}{a^{2007}}+\frac{1}{b^{2007}}+\frac{1}{c^{2007}}=\frac{1}{a^{2007}+b^{2007}+c^{2007}}.\)(đpcm).

Bình luận (0)
CS
22 tháng 8 2016 lúc 21:18

bạn béo 

Bình luận (0)

Các câu hỏi tương tự
HP
Xem chi tiết
PD
Xem chi tiết
MR
Xem chi tiết
NQ
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết
NT
Xem chi tiết
VT
Xem chi tiết
PS
Xem chi tiết