Cho : \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1;\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\left(a,b,c,x,y,z\ne0\right)\)
CMR : \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Câu 1: Cho\(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\).CM rằng\(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Câu 2: Cho x,y,z đôi một khác nhau và \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\).Tính \(A=\frac{yz}{x^2+2yz}+\frac{xz}{y^2+2xz}+\frac{xy}{z^2+2xy}\)
Câu 3: Cho a,b,c thoả mãn a+b+c=0 và\(a^2+b^2+c^2=14\).Tính \(B=a^4+b^4+c^4\)
Pạn nào làm dc thì giúp mik vs @!
Cho a,b,c,x,y,z khac 0
\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0;\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\)
Chung minh \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1;\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0.tinhA=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1,\frac{a}{z}+\frac{b}{y}+\frac{c}{z}=0\)
Cmr: \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{c^2}{z^2}=1\)
bài 1) CMR
a) (x+y)(y+z)(z+x)=0 (x;y;z#0)
thì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
b) cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1và\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
chứng minh \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Cho \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=0\left(1\right)\)và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=2\)
Tính giá trị biểu thức \(A=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=0\)
b, Tính \(\frac{ab}{a^2+b^2+c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}\)
Bài 1:
Cho x ; y ; z \(\ne0\); \(A=\frac{y}{z}+\frac{z}{y};B=\frac{z}{x}+\frac{x}{z};C=\frac{x}{y}+\frac{y}{x}\)
Tính \(A^2+B^2+C^2-ABC\)
Bài 2:
Cho \(x=\frac{a}{b+c}\); \(y=\frac{b}{c+a}\); \(z=\frac{c}{a+b}\)
Tính \(xy+yz+xz+2xyz\)
Bài 3: Rút gọn.
\(A=\left(1+\frac{b^2+c^2-a^2}{2abc}\right)\times\frac{1+\frac{a}{b+c}}{1-\frac{a}{b+c}}\times\frac{b^2+c^2-\left(b-c\right)^2}{a+b+c}\)
Cho các số a,b,c,x,y,z khác 0 và thỏa mãn \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\) và \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)
Tính giá trị biểu thức: \(A=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)