= \
= \
Cho + = \frac{1}{a+b} ; . CMR
a)
b) + =
Cho + = \frac{1}{a+b} ; . CMR
a)
b) + =
lưu ý chép kĩ nhé nguyenchieubao
ai k cho mk thì mk cho lại
= \
= \
Cho + = \frac{1}{a+b} ; . CMR
a)
b) + =
Cho + = \frac{1}{a+b} ; . CMR
a)
b) + =
lưu ý chép kĩ nhé nguyenchieubao
ai k cho mk thì mk cho lại
Cho hàm số y= \(\dfrac{2x}{x^2+1}\). CMR
a) hàm số trên đồng biến trong khoảng(0;1)
b) hàm số trên nghịch biến với mọi x >1
cho a;b;c sao cho abc=1.CMR:\(a+b+c+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)
Cho △ABC cân tại A. Vẽ đtron tâm D đkinh BC cắt AC và AB lần lượt tại E, F. Gọi H là giao điểm của BE và CF. CMR
a, A, E, H, F cùng thuộc 1 đtron
b, DE là tiếp tuyến của đtron nói trên
a) Cho a,b,c là 3 số hữu tỉ thỏa mãn abc=1
và \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}=\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
b) cho a,b,c là các số dương thỏa mãn a+b+c=3
cmr \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
cho a+b+c=1
chứng minh rằng \(\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c}\le2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)
Cho a,b,c dương thỏa mãn abc=1. Chứng minh rằng:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\left(\frac{b}{a}+\frac{a}{c}+\frac{c}{b}\right)\ge2\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cho a,b,c>0 và a+b+c=1. CMR: \(\frac{a}{a+b^2}+\frac{b}{b+c^2}+\frac{c}{c+a^2}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
1,cho a,b,c>0 . CMR: \(\frac{b}{a+3b}+\frac{c}{b+3c}+\frac{a}{c+3a}\le\frac{3}{4}\)
2,CHo a,b,c>0 thỏa mãn a+b+c <= ab+bc+ca
CMR: \(\frac{1}{1+a+b}+\frac{1}{1+b+c}+\frac{1}{1+c+a}\le1\)
3, Cho a,b,c>0 thoaor mãn a+b+c=3
CMR: \(\frac{1}{2ab^2+1}+\frac{1}{2bc^2+1}+\frac{1}{2ca^2+1}\ge1\)
Dùng bđt bunhiacopxki nha
Cho a,b.c là 3 cạnh 1 tam giác. CMR: \(\frac{1}{a+b-c}+\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
cho a,b,c>0 sao cho \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}=1\). CMR
a+b+c+\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>=10\)