nếu 0<a<b<c<d<e<f
(a-b)(c-d)(e-f).x=(b-a)(d-c)(f-e) thì x=...
Cho hàm số f(x) có đạo hàm liên tục trên R thảo mãn x . f ' x - x 2 . e x = f x và f(1) = e. Tính tích phân I = ∫ 1 2 f x d x
A. I = e 2 - 2 e
B. I = e
C. I = e 2
D. I = 3 e 2 - 2 e
Cho 2 đường thẳng d 1 : x 2 = y - 1 1 = z + 1 - 1 , d 2 : x = 1 + t y = - 1 - 2 t z = 2 + t . Gọi M a ; b ; c là điểm thuộc d 1 và N d , e , f là điểm thuộc d 2 sao cho MN ngắn nhất, khi đó tổng a + b + c + d + e + f bằng
A. 11 7
B. - 10 7
C. - 11 7
D. 10 7
Cho hàm số y=f(x) xác định và liên tục trên [1;e] thỏa mãn xf ' ( x ) = x [ f ( x ) ] 2 + 3 f ( x ) + 4 x và f(1) = -3. Tính f(e).
A. 5 2 e
B. - 5 2
C. - 5 2 e
D. 5 2
Cho hàm số f ( x ) = a x 4 + b x 3 + c x 2 + d x + e , ( a , b , c , d , e ∈ ℝ ) Hàm y=f'(x) có bảng xét dấu như sau:
Số nghiệm của phương trình f(x)=e là
A. 1
B. 0
C. 2
D. 3
Cho hàm số f(x) liên tục trong đoạn [1;e], biết ∫ 1 e f ( x ) x d x = 1 , f(e) = 2. Tích phân ∫ 1 e f ' ( x ) ln x d x = ?
A. 1
B. 0
C. 2
D. 3
cho hình vuông ABCD cố định, độ dài cạnh là a. E là điểm di chuyển trên cạnh CD (E khác D ), đường thẳng AE cắt đường thẳng BC tại F, đường thẳng vuông góc với AE tại A cắt đường thẳng CD tạ K.
1) chứng minh hai tam giác ABE và ADK bằng nhau. Suy ra tam giác AFK vuông cân.
2) gọi I là trung điểm của FK. chứng minh I là đường tròn đi qua A,C,F,K và I di chuyển trên đường thẳng cố định khi E di động trên CD
Cho hàm số y = f ( x ) = 2019 l n e x 2019 + e . Tính giá trị biểu thức A = f ’ ( 1 ) + f ’ ( 2 ) + … + f ’ ( 2018 )
A. 2018
B. 1009
C. 2017 2
D. 2019 2
Cho đa thức biến x có dạng f x = x 4 + 2 a x 3 + 4 b x 2 + 8 c x + 16 d a , b , c , d ∈ R thỏa mãn f 4 + i = f - 1 - i = 0 . Khi đó a + b + c + d bằng
A. 34
B. 17 8
C. 17 5
D. 25 8
Cho hàm số y=f(x) có đạo hàm liên tục trên R. Biết f(1)=e và ( x + 2 ) f ( x ) = x f ' ( x ) - x 3 , với mọi x thuộc R. Tính f(2).
A. 4 e 2 - 4 e + 4
B. 4 e 2 - 2 e + 1
C. 2 e 3 - 2 e + 2
D. 4 e 2 + 4 e - 4