Cho f, g là hai hàm liên tục trên [1;3] thỏa mãn điều kiện ∫ 1 3 f ( x ) + 3 g ( x ) d x = 10 đồng thời ∫ 1 3 ( 2 f ( x ) - g ( x ) d x = 6 . Tính ∫ 1 3 f ( x ) + g ( x ) d x .
Cho hai hàm số liên tục f(x) và g(x) có nguyên hàm lần lượt là F(x) và G(x) trên [0; 2]. Biết F(0) = 0, F(2) = 1, G(2) = 1 và ∫ 0 2 F ( x ) g ( x ) d x = 3 . Tính tích phân hàm: ∫ 0 2 G ( x ) f ( x ) d x
A. I = 3.
B. I = 0.
C. I = -2.
D. I = -4.
Cho hàm số f(x) có đạo hàm dương, liên tục trên đoạn [0;1] thỏa mãn điều kiện f(0)=1 và 3 ∫ 0 1 f ' ( x ) . f ( x ) 2 + 1 9 d x ≤ 2 ∫ 0 1 f ' ( x ) . f ( x ) d x Tính ∫ 0 1 f ( x ) 3 d x
A. 3/2
B. 5/4
C. 5/6
D. 7/6
Cho f(x) là hàm số chẵn, liên tục trên R thỏa mãn ∫ 0 1 f ( x ) d x = 2018 và g(x) là hàm số liên tục trên R thỏa mãn g ( x ) + g ( - x ) = 1 Tính tích phân I = ∫ - 1 1 f ( x ) . g ( x ) d x
A. I = 2018
B. I = 504,5
C. I =4036
D. I = 1008
Cho hàm số y= f(x) có đạo hàm liên tục trên R và f(1) = 1; f(-1) = -1/3 Đặt g ( x ) = f 2 ( x ) - 4 f ( x ) . Đồ thị của hàm số là đường cong ở hình bên. Mệnh đề nào sau đây đúng?
A.
B.
C.
D.
cho hàm số y = f(x) liên tục trên R sao cho maxf(x) = 3 trên [-1;2] Xét g(x) = f(3x-1) + m Tìm m để maxg(x) trên [0;1 bằng -10
Cho hàm số y = f(x) liên tục trên R sao cho maxf(x) = f(2) = bằng 84 trên [0; 10] . Xét hàm số g(x) = f(x3+x) - x2 + 2x + m.Tìm m để giá trị lớn nhất của g(x) trên [0; 2]
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f '(x) như hình vẽ bên dưới. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
I. Hàm số có 3 điểm cực trị.
II. Hàm số g(x)đạt cực tiểu tại x=0
III. Hàm số g(x) đạt cực đại tại x=2
IV. Hàm số g(x) đồng biến trên khoảng (-2;0)
V. Hàm số g(x) nghịch biến trên khoảng (-1;1)
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A.1
B.4
C.3
D.2
cho h/s y = f(x) liên tục trên R sao cho gtln cùa f(x) trên [-1;2] bằng 3. Xét g(x) = f(3x - 1) + m. Tìm m để gtln của g(x) bằng -10 trên doan [0;1]