Cho nửa đường tròn tâm O bán kính R đường kính AB, H là trung điểm của OA. Qua H vẽ đường thẳng vuông góc với OA cắt nửa đường tròn tâm O tại C. Gọi E và F là hình chiếu vuông góc của H trên AC và BC. d) Đường thẳng EF cắt nửa đường tròn tâm O tại M,N. Chứng minh rằng CM = CN
cho đường tròn tâm o bán kính r và điểm a nằm ngoài đường tròn. đường tròn đường kính oa cắt đường tròn tâm o bán kính r tại m và n, đường thẳng đi qua a cắt đường tròn tâm o bán kính r tại b và c. b thuộc đoạn ac. gọi h là trung điểm của bc.
a) am là tiếp tuyến của đường tròn tâm o bán kính r.
b) Đường thẳng qua B vuông góc với OM cắt MN tại d. chứng minh
1) góc AHN = góc BDN
2) DH // MC
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) với B, C là hai tiếp điểm. Vẽ đường kính BD của đường tròn (O), AD cắt (O) tại E. Gọi H là giao điểm của OA và BC, K là trung điểm của ED. a) Chứng minh: A, B, O, C cùng thuộc một đường tròn và OA vuông góc với BC. b) Chứng minh: AE.AD = AC c) Vẽ OK và cắt BC tại F. Chứng minh: FD là tiếp tuyến của đường tròn
cho đường tròn (o;R) và một điểm A sao cho Oa=2R vẽ tiếp tuyến AB với đường tròn tâm o (b là tiếp tuyến ) vẽ dây Bc của đường tròn tâm o vuông góc với OA tại H
a) tính Ab theo R và chứng minh Ac là tiếp tuyến của đường tròn tâm O
b) c/m tam giác abc là tam giác đều
c) trên tia đối của tia BC lấy điểm Q. từ Q vẽ 2 tiếp tuyến QD vad QE của đường tròn tâm O ( D và E là 2 tiếp tuyến ). C/M 2 điểm A,E,D thẳng hàng
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) với B, C là hai tiếp điểm. Vẽ đường kính BD của đường tròn (O), AD cắt (O) tại E. Gọi H là giao điểm của OA và BC, K là trung điểm của ED.
a) Chứng minh: A, B, O, C cùng thuộc một đường tròn và OA vuông góc với BC.
b) Chứng minh: AE.AD = AC
c) Vẽ OK và cắt BC tại F. Chứng minh: FD là tiếp tuyến của đường tròn
Từ điểm A nằm ngoài đường tròn (O;R) với OA > 2R, kẻ các tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính BD của đường tròn (O) ; AD cắt đường tròn (O) tại E ( E khác D).
a) Chứng minh: OA ⊥ BC tại H và 4 điểm A, B, O, C cùng thuộc đường tròn.
b) Chứng minh: CD // OA và AH.AO = AE.AD
c) Gọi I là trung điểm của HA. Chứng minh ABI = BDH
cho hai đường tròn tâm O và O' tiếp xúc ngoài với nhau tại A, có đường kính AB của đường tròn tâm O, đường kính AC của đường tròn O', gọi MN là tiếp tuyến chung của hai đường tròn (M thuộc đường tròn O, N thuộc đường tròn O') hai tia BM và CN cắt nhau tại E. a) CM: tam giác EBC là tam giác vuông b) CM: EB.EM=EN.EC c) Tính MN biết bán kính của đường tròn (O) và (O') lần lượt là 9cm và 4cm
Cho điểm A nằm ngoài đường tròn (O;R). Vẽ 2 tiếp tuyến AB, AC với đường tròn (O), (, C là các tiếp điểm). Vẽ đường kính CD của đường tròn (O).
a) Chứng minh rằng: OA ⊥ BC và OA // BD
b) Gọi E là giao điểm của AD và đường tròn (O) (E khác D), H là giao điểm của OA và BC. Chứng minh rằng: AE . AD = AH . AO
Giúp em với ạ! Em cảm ơn nhiều!!
cho điểm A nằm ngoài đường tròn tâm O bán kình R từ A kẻ hai tiếp tuyến AB, Ac với đường tròn tâm o ( b, C là tiếp điểm)
a) giả sử R=15 và OA = 25 hãy tính AB
b) c/m oa vuông góc với bc tại K
c) kẻ đường kính CD của đường tròn tâm o gọi P là giao điểm của AC và DB. C/M Ap=AC
d) kẻ BH vuông góc với cd tại H gọi I là giao điểm của BN và AD. C/m Sabd=2Sabd là diện tích tam giác BCD; Scdb là diện tích tam giác CID