Cho đường tròn tâm O có hai đường kính AB và CD vuông góc với nhau. Lấy M cung nhỏ AC, vẽ tiếp tuyến với đường tròn tâm O tại M cắt đường thẳng CD tại S. CM góc MSD = 2lần góc MBA
Cho nửa đường tròn tâm (O) đường kính BC và điểm A trên nửa đường tròn (O) ( A khác B,C). Hạ AH vuông góc với BC (H thuộc BC) . I,K lần lượt đối xứng với H qua AB, AC. Đường thẳng IK và tia AC cắt tiếp tuyến kẻ từ B của (O) lần lượt tại M,N. Gọi E là giao điểm của IH và AB, F là giao điểm KH và AC.
a) Chứng minh: I, A, K thẳng hàng. IK là tiếp tuyến của ( O )
b) Chứng minh: \(\dfrac{1}{BH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AN^2}\)
c) Chứng minh: M là trung điểm của BN và MC, AH, EF đồng quy
d) Xác định vị trí điểm A trên nửa đường tròn để diện tích tứ giác BIKC lớn nhất
Cho nửa đường tròn tâm (O) đường kính BC và điểm A trên nửa đường tròn (O) ( A khác B,C). Hạ AH vuông góc với BC (H thuộc BC) . I,K lần lượt đối xứng với H qua AB, AC. Đường thẳng IK và tia AC cắt tiếp tuyến kẻ từ B của (O) lần lượt tại M,N. Gọi E là giao điểm của IH và AB, F là giao điểm KH và AC
Chứng minh: M là trung điểm của BN và MC, AH, EF đồng quy
Cho tam giác ABC (AB nhỏ hơn AC) có 3 góc nhọn ,đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại D và E. Gọi H là giao điểm của BE và CD, tia AH cắt cạnh BC tại F. Gọi I là trung điểm AH . Qua I kẻ đường thẳng vuông góc với AO cắt đường thẳng DE tại M. CM: AM là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE
cho đường tròn tâm O bán kính R , M nằm ở miền trong của đương tròn. Qua M kẻ 2 dây cung AB và CD vuông góc với nhau tại M . I,K là TĐ của AB, CD. CM:
A,Khi AB,CD quay quanh M thì TK luoon đi qua 1 điểm cối định
b. MA^2+MB^2+MC^2+MD^2=4R^2
c,AB^2+CD^2 ko dổi khi dây AB,CD thay đổi và luôn vuông góc với nhau
2 Cho nửa đường tròn tâm O bán kính R và dây cung CD ( C,D cùng thuộc 1 nửa mặt phẳng bờ AB).H,K lần lượt là chân đg vuông góc hạ từA,B đến CD
a,CM: Sahkb=Sacb+Sadb
b,Tính Sahkb biết AB=20cm,CD=12cm và CD tạo với AB 1 góc bằng 30 độ
3. Cho tam giác ABC nội tiếp trong đường tròn tâm O bán kính R có góc A bé hơn 90 đọ. Trên cung BC ko chứa điểm A lấy M bất kỳ. D,E theo thứ tự là điểm đối xứng của M với AB và AC. tìm M để DE co độ dài lớn nnhaat
5,từ 1 điêm P nằm ở ngoài đường tròn (O),kẻ 2 tiếp tuyến PA,PB của (O) vs AB là các tiếp điểm. M là giao điểm của OP và AB. Kẻ dây cung CD đi qua M ( CD ko Qu O). 2 tiếp tuyến của đg tròn tại C và D cắt nhau tại Q. tính góc OPQ
7,Cho tam giác ABC và trực tâm H nằm trong tam giác đó. P là điểm nằm trên cung nhỏ BC của đường tròn ngoại tiếp tam giác ABC.E là chân đường cao hạ từ B đến AC. Dựng các HBH : PAQB và PADC, QA cắt HD tại F. CM:È song song vs AP.
nhờ các bạn ssieeu toán giải hộ mình với! thanks nhiều
Cho đường tròn tâm O bán kính R có hai đường kính AB và CD vuông góc với nhau. Trên đoạn thẳng AB lấy điểm M M khác O . CM cắt đường tròn tâm O tại N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn ở Q
a) c/m 4 điểm m ,o,q,n thẳng hàng
b)c/ CM*CN=CO*CD
cho đường tròn (o) đường kính AB và đường thẳng d là tiếp tuyến của đường tròn kẻ từ B. trên d lấy hai điểm nằm khác phía với điểm B và BC<BD.AC cắt (o) tại E, AD cắt (o) tại F.(E,F khác A) đường thẳng kẻ qua A vuông góc với EF cắt CD tại M.
a) chứng minh tứ giác CEFD nội tiếp.
b) Gọi I là tâm đường tròn ngoại tiếp tứ giác CEFD. chứng minh IM vuông góc với CD.
c) gọi P là giao điểm của FE và CD. PA cắt đường tròn (o) tại K (K khác A) c/m K,B,I thẳng hàng
Từ điểm A ở ngoài đường tròn (O,R) . Vẽ 2 tiếp tuyến Ab , AC
a. cm : OA vuông góc BC
b. Lấy điểm M bất kì trên cung nhỏ BC . Vẽ tiếp tuyến tại M của (O) cắt AB , AC lần lượt tại E , F . cm : Góc EOF = \(\frac{GócBOC}{2}\)
c. Kẻ đường kính BD của đường tròn (O) và vẽ CK vuông góc BD tại K . cm : AC . CD = CK . OA
Cho đường tròn (O) đường kính AB. Một điểm C thuộc đường tròn đó sao cho AC>BC. Hai tiếp tuyến tại A và C của đường tròn (O) cắt nhau tại D, gọi E là giao điểm của DC và AB. Qua E kẻ đường vuông góc với AE, cắt AC và BD lần lượt tại F và K. Qua K kẻ đường vuông góc với FB. cắt AE tại I . Chứng minh I là trung điểm AE
Cho nữa đường tròn(O;R) đường kính CD. Trên nửa mặt phẳng chứa nửa đường tròn vẽ các tia Cx, Dy cùng vuông góc với CD. Qua điểm E thuộc nửa đường tròn(E khác C và D) kẻ tiếp tuyến với nửa đường tròn cắt Cx, Dy lần lượt tại A và B
Chứng minh:
a)AB=CA+DB
b)gócAOB=90 độ
c)Tìm độ dài đoạn thẳng BD, biết R=8cm và khi CA=4cm
GIẢI HỘ OANH VỚI Ạ HUHU!!!